自然数 $n$ について、「$n^2$ が 3 の倍数ならば、$n$ は 3 の倍数である」という命題を、対偶を用いて証明する。

数論整数の性質対偶倍数証明
2025/4/3

1. 問題の内容

自然数 nn について、「n2n^2 が 3 の倍数ならば、nn は 3 の倍数である」という命題を、対偶を用いて証明する。

2. 解き方の手順

対偶を考える。元の命題「n2n^2 が 3 の倍数ならば、nn は 3 の倍数である」の対偶は、「nn が 3 の倍数でないならば、n2n^2 は 3 の倍数でない」となる。この対偶を証明する。
nn が 3 の倍数でないとき、nn はある整数 kk を用いて、n=3k+1n = 3k + 1 または n=3k+2n = 3k + 2 と表せる。
(i) n=3k+1n = 3k + 1 のとき、
n2=(3k+1)2=9k2+6k+1=3(3k2+2k)+1n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1
3k2+2k3k^2 + 2k は整数なので、n2n^2 は 3 で割ると 1 余る。よって、n2n^2 は 3 の倍数ではない。
(ii) n=3k+2n = 3k + 2 のとき、
n2=(3k+2)2=9k2+12k+4=9k2+12k+3+1=3(3k2+4k+1)+1n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1
3k2+4k+13k^2 + 4k + 1 は整数なので、n2n^2 は 3 で割ると 1 余る。よって、n2n^2 は 3 の倍数ではない。
したがって、nn が 3 の倍数でないならば、n2n^2 は 3 の倍数でない。これは対偶が真であることを示している。対偶が真なので、元の命題も真である。

3. 最終的な答え

自然数 nn について、n2n^2 が 3 の倍数ならば、nn は 3 の倍数である。 (証明終わり)

「数論」の関連問題

$\left(\frac{1}{5}\right)^{10}$ を小数で表したとき、小数第何位に初めて0でない数字が現れるか。ただし、$\log_{10}2 = 0.3010$ とする。

対数常用対数桁数不等式
2025/4/10

正の奇数全体の集合をAとする。 以下のそれぞれの数について、集合Aに属するかどうかを判定し、$\in$または$\notin$の記号を使って表す。 (1) 5 (2) 6 (3) -3

集合奇数整数の性質記号
2025/4/10

$a, b$ は自然数で、$p = a^2 - a + 2ab + b^2 - b$ とする。$p$ が素数となるような $a, b$ をすべて求めよ。

素数因数分解整数問題
2025/4/9

2進法で表すと5桁、5進法で表すと3桁になる正の整数の個数を求める問題です。

進法整数不等式
2025/4/9

$a, b, c$ をそれぞれ1桁の数とする。3桁の数を $abc$ と表記するとき、7進法で表すと3桁の数 $abc_{(7)}$ になり、5進法で表すと3桁の数 $bca_{(5)}$ になる数を...

進法数の表現方程式
2025/4/9

$99^{100}$ の下位5桁を求める問題です。

合同算術二項定理剰余指数
2025/4/9

自然数 $n$ と $28$ の最小公倍数が $168$ であるような $n$ を全て求める。ただし、$n=ab$ とし、$n$ と $28$ の最大公約数を $a$ とする。

最小公倍数最大公約数約数互いに素
2025/4/9

$x, y$ を自然数とするとき、$4x + 5y$ の形で表すことのできない最大の整数を求めます。

不定方程式最大整数線形結合自然数
2025/4/8

問題は3つの部分から構成されています。 (1) ユークリッドの互除法を用いて37と11の最大公約数と最小公倍数を求めます。 (2) (1)の結果を利用して、方程式 $37x + 11y = 3$ を満...

ユークリッドの互除法最大公約数最小公倍数一次不定方程式整数解
2025/4/8

$\sqrt{540-20n}$ が整数となるような自然数 $n$ の値をすべて求めよ。

平方根整数の性質約数倍数
2025/4/8