与えられた式を簡略化し、$n$について解きます。与えられた式は $3(n-2) + 3n - 1 + 3n + 5 = 9n - 6$ です。

代数学一次方程式式の簡略化方程式の解
2025/7/21

1. 問題の内容

与えられた式を簡略化し、nnについて解きます。与えられた式は 3(n2)+3n1+3n+5=9n63(n-2) + 3n - 1 + 3n + 5 = 9n - 6 です。

2. 解き方の手順

まず、左辺の括弧を展開します。
3(n2)=3n63(n-2) = 3n - 6
次に、左辺全体を簡略化します。
3n6+3n1+3n+5=9n23n - 6 + 3n - 1 + 3n + 5 = 9n - 2
すると、式は次のようになります。
9n2=9n69n - 2 = 9n - 6
次に、nnの項を一方の辺にまとめ、定数項をもう一方の辺にまとめます。
9n9n=6+29n - 9n = -6 + 2
0=40 = -4
これは矛盾しています。したがって、解はありません。

3. 最終的な答え

解なし

「代数学」の関連問題

AとBの2つの水槽があり、Aには最初に15L、Bには最初に10Lの水が入っている。Aには毎分2.5L、Bには毎分1Lの割合で水を入れ始めると、Aの水量がBの水量の2倍になるのは何分後か求める問題です。

一次方程式文章題水量比例
2025/7/22

2次関数 $y = 2x^2 - 4ax - a + 1$ で表される放物線 $C$ について、以下の問いに答える。 (1) $x = -\frac{1}{2}$ のときの $y$ の値を求める。また...

二次関数放物線平方完成最大値最小値判別式
2025/7/22

折り紙を子供たちに配る問題です。子供の人数を求める必要があります。子供の人数を$x$人とします。1人に5枚ずつ配ろうとすると10枚足りず、1人に3枚ずつ配ると22枚余ります。

一次方程式文章問題数量関係
2025/7/22

$a$ を実数の定数とする。2次関数 $y = 2x^2 - 4ax - a + 1$ について、以下の設問に答えよ。 (1) $x = -\frac{1}{2}$ のとき、$y$ の値を求めよ。また...

二次関数二次方程式グラフ最大値最小値平行移動判別式
2025/7/22

100円硬貨と500円硬貨が合わせて30枚あり、金額の合計が9800円である。100円硬貨の枚数を求める。

方程式文章問題連立方程式
2025/7/22

画像に記載された複数の数学の問題を解きます。

文章問題方程式割合連立方程式平均割合と比
2025/7/22

(1) 歩く速さが分速30m、走る速さが分速150mの人が、自宅から2600m離れた学校に向かいました。最初に歩き、途中から走って行ったところ20分かかりました。走った時間を求めます。 (2) 2人で...

連立方程式文章問題割合食塩水方程式
2025/7/22

画像には10個の小問と、三角形に関する2つの小問があります。

因数分解二次方程式有理化不等式2次関数順列確率三角関数余弦定理正弦定理
2025/7/22

与えられた条件を満たす2次関数を求める問題です。 (1) 頂点が(2, 3)で、点(1, 1)を通る。 (2) 軸がx = -1で、2点(0, 3), (1, 0)を通る。 (3) 3点(-1, 6)...

二次関数2次関数関数方程式
2025/7/22

2次不等式 $-x^2 + 10x - 30 \ge 0$ を解き、選択肢の中から適切なものを選びます。選択肢は「すべての実数」または「解はない」のいずれかです。

二次不等式判別式二次関数グラフ
2025/7/22