$a, b$ をパラメータとする連立方程式 \begin{cases} x - ay = a \\ bx - y = 2 \end{cases} について、$ab=1$ のとき、この連立方程式がどのような解を持つかを問う問題です。選択肢は「一意の解を持つ」です。

代数学連立方程式線形代数解の存在性パラメータ
2025/7/22

1. 問題の内容

a,ba, b をパラメータとする連立方程式
\begin{cases}
x - ay = a \\
bx - y = 2
\end{cases}
について、ab=1ab=1 のとき、この連立方程式がどのような解を持つかを問う問題です。選択肢は「一意の解を持つ」です。

2. 解き方の手順

与えられた連立方程式を整理します。
まず、1つ目の式から xx を求めます。
x=ay+ax = ay + a
これを2つ目の式に代入します。
b(ay+a)y=2b(ay + a) - y = 2
aby+aby=2aby + ab - y = 2
ab=1ab = 1 の条件を使うと、
y+1y=2y + 1 - y = 2
1=21 = 2
これは矛盾です。したがって、この連立方程式は解を持ちません。

3. 最終的な答え

解なし

「代数学」の関連問題

数列 $a^2, 10, -a$ が等差数列であるとき、$a$ の値を求める問題です。ただし、$a$ の値は2つ存在し、$a$ の小さい方から答える必要があります。

等差数列二次方程式数列方程式
2025/7/22

数列 $a, 21, a^2$ が等差数列であるとき、$a$ の値を求める問題です。ただし、$a$ は2つ存在し、$a$ の小さい方から順に答える必要があります。

等差数列二次方程式因数分解数列
2025/7/22

一般項 $a_n = -5n - 10$ で表される数列 $\{a_n\}$ は等差数列である。この数列の初項と公差を求めよ。

数列等差数列初項公差一般項
2025/7/22

$x = \frac{1}{\sqrt{3} + \sqrt{2}}$ のとき、次の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ (...

式の計算無理数の計算展開因数分解
2025/7/22

与えられた連立方程式を解いて、$x$と$y$の値を求める問題です。連立方程式は以下の通りです。 $\begin{cases} 5x - 2(x + 3y) = -24 \\ 3(x + y) - (x...

連立方程式代入法方程式
2025/7/22

次の連立方程式を解く問題です。 $ \begin{cases} 9x + 12y = 3 \\ 12x + 12y = 5 \end{cases} $

連立方程式一次方程式代入法方程式の解法
2025/7/22

次の連立方程式を解きます。 $y = -x$ $5x - y = 3$

連立方程式代入法一次方程式
2025/7/22

以下の連立方程式を解きます。 $ \begin{cases} x = 15 + 3y \\ 2y = 15 - x \end{cases} $

連立方程式代入法一次方程式
2025/7/22

(1) $\frac{1}{3-\sqrt{7}}$ の整数部分 $a$ と小数部分 $b$ を求めよ。 (2) $\frac{8}{\sqrt{5}-1}$ の整数部分 $a$ と小数部分 $b$ ...

有理化平方根整数部分小数部分根号
2025/7/22

与えられた絶対値記号を含む式を、絶対値記号を使わずに表す問題です。 (1) $|\pi - 1| - |3 - \pi|$ (2) $|2 - \sqrt{5}| + |2\sqrt{5} - 4|$

絶対値式の計算無理数
2025/7/22