$x = \frac{1}{\sqrt{3} + \sqrt{2}}$ のとき、次の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ (3) $x^3 + \frac{1}{x^3}$ (4) $x^4 + \frac{1}{x^4}$

代数学式の計算無理数の計算展開因数分解
2025/7/22

1. 問題の内容

x=13+2x = \frac{1}{\sqrt{3} + \sqrt{2}} のとき、次の式の値を求めよ。
(1) x+1xx + \frac{1}{x}
(2) x2+1x2x^2 + \frac{1}{x^2}
(3) x3+1x3x^3 + \frac{1}{x^3}
(4) x4+1x4x^4 + \frac{1}{x^4}

2. 解き方の手順

まず、xx を簡単にする。xx の分母を有利化する。
x=13+2=32(3+2)(32)=3232=32x = \frac{1}{\sqrt{3} + \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2}
次に、1x\frac{1}{x} を求める。
1x=132=3+2(32)(3+2)=3+232=3+2\frac{1}{x} = \frac{1}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} = \frac{\sqrt{3} + \sqrt{2}}{3 - 2} = \sqrt{3} + \sqrt{2}
(1) x+1x=(32)+(3+2)=23x + \frac{1}{x} = (\sqrt{3} - \sqrt{2}) + (\sqrt{3} + \sqrt{2}) = 2\sqrt{3}
(2) x2+1x2=(x+1x)22x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2
x2+1x2=(23)22=122=10x^2 + \frac{1}{x^2} = (2\sqrt{3})^2 - 2 = 12 - 2 = 10
(3) x3+1x3=(x+1x)33(x+1x)x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x})
x3+1x3=(23)33(23)=83363=24363=183x^3 + \frac{1}{x^3} = (2\sqrt{3})^3 - 3(2\sqrt{3}) = 8 \cdot 3\sqrt{3} - 6\sqrt{3} = 24\sqrt{3} - 6\sqrt{3} = 18\sqrt{3}
(4) x4+1x4=(x2+1x2)22x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2
x4+1x4=(10)22=1002=98x^4 + \frac{1}{x^4} = (10)^2 - 2 = 100 - 2 = 98

3. 最終的な答え

(1) x+1x=23x + \frac{1}{x} = 2\sqrt{3}
(2) x2+1x2=10x^2 + \frac{1}{x^2} = 10
(3) x3+1x3=183x^3 + \frac{1}{x^3} = 18\sqrt{3}
(4) x4+1x4=98x^4 + \frac{1}{x^4} = 98

「代数学」の関連問題

商品Pの価格は商品Qの価格の1.5倍であった。その後、どちらも200円値上がりした結果、商品Pの価格は商品Qの価格の1.4倍になった。現在の商品の価格を求めよ。

方程式文章問題一次方程式
2025/7/22

与えられた式 $\frac{1}{8}(x+3y) - \frac{1}{6}(2x+y)$ を簡略化せよ。

式の簡略化分数一次式
2025/7/22

与えられた8個の2次方程式を解く問題です。

二次方程式因数分解方程式の解
2025/7/22

与えられた5x5行列の行列式を計算する問題です。行列は以下の通りです。 $ \begin{vmatrix} 3 & 5 & 1 & 2 & -1 \\ 2 & 6 & 0 & 9 & 1 \\ 0 &...

行列式線形代数余因子展開
2025/7/22

与えられた関数の定義域に対する値域を求めます。 (1) $y = 2x^2$ ($1 \le x < 2$) (2) $y = 2x^2$ ($-1 \le x < 2$)

二次関数定義域値域最大値最小値
2025/7/22

与えられた式を計算して簡略化します。問題の式は以下の通りです。 $\frac{2}{3 + \sqrt{5} - \sqrt{14}} + \frac{2}{3 + \sqrt{5} + \sqrt{...

式の計算有理化平方根
2025/7/22

実数 $a$, $b$, $x$ が与えられており、以下の条件を満たします。 * $a+b=3$ * $ab=1$ * $x-\frac{1}{x}=2$ また、$A = ax - \fr...

式の計算代数方程式式の値分数式
2025/7/22

問題文は次の計算の答えがあうように、ア〜エに×, ÷の記号のどちらかを当てはめるというものです。 (1) $18x^2y^3$ ア $9x$ イ $y = 2xy^2$ (2) $3a^2$ ウ $4...

式の計算割り算文字式
2025/7/22

$a-b = \sqrt{3}$、 $ab=1$ を満たす正の数 $a$、$b$ がある。 (1) $a^2+b^2$ の値と、$a+b$ の値をそれぞれ求めよ。 (2) $x = a^2-\sqrt...

式の計算平方根数式変形絶対値
2025/7/22

$a = -5$、$b = \frac{1}{4}$ のとき、次の式の値を求めます。 (1) $3(-3a - b) - 5(-a + b)$ (2) $8ab^2 \div (-2b)$ (3) $...

式の計算代入展開約分
2025/7/22