与えられた定積分 $\int_{0}^{\infty} \frac{dx}{1+x^3}$ を計算します。解析学定積分部分分数分解積分計算arctan対数関数2025/7/221. 問題の内容与えられた定積分∫0∞dx1+x3\int_{0}^{\infty} \frac{dx}{1+x^3}∫0∞1+x3dxを計算します。2. 解き方の手順まず、被積分関数を部分分数分解します。1+x3=(1+x)(1−x+x2)1+x^3 = (1+x)(1-x+x^2)1+x3=(1+x)(1−x+x2)であるから、11+x3=A1+x+Bx+C1−x+x2\frac{1}{1+x^3} = \frac{A}{1+x} + \frac{Bx+C}{1-x+x^2}1+x31=1+xA+1−x+x2Bx+Cとおくと、1=A(1−x+x2)+(Bx+C)(1+x)1 = A(1-x+x^2) + (Bx+C)(1+x)1=A(1−x+x2)+(Bx+C)(1+x)1=(A+B)x2+(−A+B+C)x+(A+C)1 = (A+B)x^2 + (-A+B+C)x + (A+C)1=(A+B)x2+(−A+B+C)x+(A+C)係数を比較してA+B=0A+B=0A+B=0, −A+B+C=0-A+B+C=0−A+B+C=0, A+C=1A+C=1A+C=1これを解くと、A=13A = \frac{1}{3}A=31, B=−13B = -\frac{1}{3}B=−31, C=23C = \frac{2}{3}C=32となる。したがって、11+x3=13(11+x+−x+21−x+x2)\frac{1}{1+x^3} = \frac{1}{3}\left(\frac{1}{1+x} + \frac{-x+2}{1-x+x^2}\right)1+x31=31(1+x1+1−x+x2−x+2)=13(11+x−x−2x2−x+1)=\frac{1}{3}\left(\frac{1}{1+x} - \frac{x-2}{x^2-x+1}\right)=31(1+x1−x2−x+1x−2)=13(11+x−x−12x2−x+1+32x2−x+1)=\frac{1}{3}\left(\frac{1}{1+x} - \frac{x-\frac{1}{2}}{x^2-x+1} + \frac{\frac{3}{2}}{x^2-x+1}\right)=31(1+x1−x2−x+1x−21+x2−x+123)=13(11+x−122x−1x2−x+1+321x2−x+1)=\frac{1}{3}\left(\frac{1}{1+x} - \frac{1}{2}\frac{2x-1}{x^2-x+1} + \frac{3}{2}\frac{1}{x^2-x+1}\right)=31(1+x1−21x2−x+12x−1+23x2−x+11)=13(11+x−12(x2−x+1)′x2−x+1+321(x−12)2+34)=\frac{1}{3}\left(\frac{1}{1+x} - \frac{1}{2}\frac{(x^2-x+1)'}{x^2-x+1} + \frac{3}{2}\frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}}\right)=31(1+x1−21x2−x+1(x2−x+1)′+23(x−21)2+431)よって、∫0∞dx1+x3=13∫0∞(11+x−12(x2−x+1)′x2−x+1+321(x−12)2+34)dx\int_{0}^{\infty} \frac{dx}{1+x^3} = \frac{1}{3}\int_{0}^{\infty} \left(\frac{1}{1+x} - \frac{1}{2}\frac{(x^2-x+1)'}{x^2-x+1} + \frac{3}{2}\frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}}\right)dx∫0∞1+x3dx=31∫0∞(1+x1−21x2−x+1(x2−x+1)′+23(x−21)2+431)dx=13[ln(1+x)−12ln(x2−x+1)+32⋅23arctan(x−1232)]0∞=\frac{1}{3}\left[\ln(1+x) - \frac{1}{2}\ln(x^2-x+1) + \frac{3}{2}\cdot \frac{2}{\sqrt{3}}\arctan\left(\frac{x-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)\right]_0^{\infty}=31[ln(1+x)−21ln(x2−x+1)+23⋅32arctan(23x−21)]0∞=13[ln(1+xx2−x+1)+3arctan(2x−13)]0∞=\frac{1}{3}\left[\ln\left(\frac{1+x}{\sqrt{x^2-x+1}}\right) + \sqrt{3}\arctan\left(\frac{2x-1}{\sqrt{3}}\right)\right]_0^{\infty}=31[ln(x2−x+11+x)+3arctan(32x−1)]0∞=13[ln(1+xx2−x+1)]0∞+33[arctan(2x−13)]0∞=\frac{1}{3}\left[\ln\left(\frac{1+x}{\sqrt{x^2-x+1}}\right)\right]_0^{\infty} + \frac{\sqrt{3}}{3}\left[\arctan\left(\frac{2x-1}{\sqrt{3}}\right)\right]_0^{\infty}=31[ln(x2−x+11+x)]0∞+33[arctan(32x−1)]0∞=13(ln(1)−ln(1))+33(π2−arctan(−13))=\frac{1}{3}(\ln(1)-\ln(1)) + \frac{\sqrt{3}}{3}\left(\frac{\pi}{2} - \arctan\left(\frac{-1}{\sqrt{3}}\right)\right)=31(ln(1)−ln(1))+33(2π−arctan(3−1))=33(π2−(−π6))=33(3π+π6)=33⋅4π6=2π39=\frac{\sqrt{3}}{3}\left(\frac{\pi}{2} - \left(-\frac{\pi}{6}\right)\right) = \frac{\sqrt{3}}{3}\left(\frac{3\pi+\pi}{6}\right) = \frac{\sqrt{3}}{3}\cdot \frac{4\pi}{6} = \frac{2\pi\sqrt{3}}{9}=33(2π−(−6π))=33(63π+π)=33⋅64π=92π3=2π33=\frac{2\pi}{3\sqrt{3}}=332π3. 最終的な答え2π33\frac{2\pi}{3\sqrt{3}}332π