関数 $y = (x+1)\log_e(x(x+1))$ の導関数 $y' = \frac{dy}{dx}$ を求めます。解析学導関数微分対数関数2025/7/261. 問題の内容関数 y=(x+1)loge(x(x+1))y = (x+1)\log_e(x(x+1))y=(x+1)loge(x(x+1)) の導関数 y′=dydxy' = \frac{dy}{dx}y′=dxdy を求めます。2. 解き方の手順まず、y=(x+1)loge(x(x+1))y = (x+1)\log_e(x(x+1))y=(x+1)loge(x(x+1))を書き換えます。y=(x+1)(logex+loge(x+1))y = (x+1)(\log_e x + \log_e(x+1))y=(x+1)(logex+loge(x+1))次に、積の微分公式 (uv)′=u′v+uv′ (uv)' = u'v + uv' (uv)′=u′v+uv′ を用いて微分します。ここで、u=x+1u = x+1u=x+1、v=logex+loge(x+1)v = \log_e x + \log_e(x+1)v=logex+loge(x+1) とします。u′=ddx(x+1)=1u' = \frac{d}{dx}(x+1) = 1u′=dxd(x+1)=1v′=ddx(logex+loge(x+1))=1x+1x+1v' = \frac{d}{dx}(\log_e x + \log_e(x+1)) = \frac{1}{x} + \frac{1}{x+1}v′=dxd(logex+loge(x+1))=x1+x+11したがって、y′=u′v+uv′=1⋅(logex+loge(x+1))+(x+1)⋅(1x+1x+1)y' = u'v + uv' = 1 \cdot (\log_e x + \log_e(x+1)) + (x+1) \cdot (\frac{1}{x} + \frac{1}{x+1})y′=u′v+uv′=1⋅(logex+loge(x+1))+(x+1)⋅(x1+x+11)y′=logex+loge(x+1)+x+1x+1y' = \log_e x + \log_e(x+1) + \frac{x+1}{x} + 1y′=logex+loge(x+1)+xx+1+1y′=logex+loge(x+1)+1+1x+1y' = \log_e x + \log_e(x+1) + 1 + \frac{1}{x} + 1y′=logex+loge(x+1)+1+x1+1y′=logex+loge(x+1)+2+1xy' = \log_e x + \log_e(x+1) + 2 + \frac{1}{x}y′=logex+loge(x+1)+2+x1y′=loge(x(x+1))+2+1xy' = \log_e(x(x+1)) + 2 + \frac{1}{x}y′=loge(x(x+1))+2+x13. 最終的な答えdydx=loge(x(x+1))+2+1x\frac{dy}{dx} = \log_e(x(x+1)) + 2 + \frac{1}{x}dxdy=loge(x(x+1))+2+x1あるいはy′=loge(x(x+1))+2+1xy' = \log_e(x(x+1)) + 2 + \frac{1}{x}y′=loge(x(x+1))+2+x1