$\lim_{x \to 0} \frac{3x^2 - 5x}{x}$ を計算する問題です。

解析学極限微積分
2025/7/26

1. 問題の内容

limx03x25xx\lim_{x \to 0} \frac{3x^2 - 5x}{x} を計算する問題です。

2. 解き方の手順

まず、分子の 3x25x3x^2 - 5xxx で因数分解します。
3x25x=x(3x5)3x^2 - 5x = x(3x - 5)
したがって、与えられた式は次のようになります。
limx0x(3x5)x\lim_{x \to 0} \frac{x(3x - 5)}{x}
x0x \neq 0 のとき、xx で約分できます。
limx0(3x5)\lim_{x \to 0} (3x - 5)
xx が 0 に近づくときの極限を計算します。
limx0(3x5)=3(0)5=5\lim_{x \to 0} (3x - 5) = 3(0) - 5 = -5

3. 最終的な答え

-5

「解析学」の関連問題

次の4つの関数について、増減を調べ、グラフを描く問題です。 (1) $y = \frac{1}{x^2 + 4}$ (2) $y = x\sqrt{3 - x}$ (3) $y = (x + 1)e^...

関数の増減グラフ微分導関数極値
2025/7/27

領域 $E: x, y, z \geq 0, x^2 + y^2 + z^2 \leq 4$ 上での三重積分 $I = \iiint_E z\,dx\,dy\,dz$ の値を求めます。

三重積分球座標変換積分
2025/7/27

領域 $E = \{ (x, y, z) \mid 0 \le x, 0 \le y, 0 \le z, x+y+z \le 1 \}$ において、三重積分 $I = \iiint_E e^{x+y+...

三重積分積分多重積分指数関数
2025/7/27

$k$ を実数の定数とする。 $\tan \theta = k$ ...(1) $2\cos \theta + 1 \ge 0$ ...(2) (1) $k=1$ のとき、$0 \le \theta ...

三角関数方程式不等式tancos解の範囲
2025/7/27

点 $(2, 1)$ から放物線 $y = x^2 - 3x + 4$ に引いた2本の接線と、この放物線が囲む図形の面積を求める問題です。

積分接線放物線面積
2025/7/27

$\tan^{-1}(\tan(\frac{2}{3}\pi))$ の値を求める問題です。

三角関数逆三角関数tan値域
2025/7/26

問題2.2.1では、逆三角関数の値を求める問題です。具体的には、 (1) $cos^{-1}(-\frac{1}{2})$ (2) $tan^{-1}(tan(\frac{3}{4}\pi))$ (3...

逆三角関数三角関数計算等式
2025/7/26

関数 $f(x) = x^3 - 9x^2 + 15x + 7$ について、以下の問いに答えます。 (1) $f(x)$ の増減を調べ、極値を求め、極値をとる $x$ の値を求めます。 (2) $k$...

微分極値増減三次関数方程式の解
2025/7/26

定積分 $\int_{\frac{1}{2}}^{\frac{5}{4}} \sqrt{18x-8} \, dx$ を計算します。

定積分置換積分不定積分計算
2025/7/26

数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $S_n = 2^{n+1} - n - 2$ で与えられているとき、以下の問いに答えます。 (1) 数列 $\{a_n\}...

数列級数等比数列和の公式
2025/7/26