次の3つの関数をそれぞれ微分する。 (1) $y = 3^x$ (2) $y = 10^{3x+1}$ (3) $y = \frac{2^x + 2^{-x}}{2}$解析学微分指数関数合成関数の微分対数2025/7/221. 問題の内容次の3つの関数をそれぞれ微分する。(1) y=3xy = 3^xy=3x(2) y=103x+1y = 10^{3x+1}y=103x+1(3) y=2x+2−x2y = \frac{2^x + 2^{-x}}{2}y=22x+2−x2. 解き方の手順(1) y=3xy = 3^xy=3xy′=(3x)′y' = (3^x)'y′=(3x)′公式 (ax)′=axloga(a^x)' = a^x \log a(ax)′=axloga を用いると、y′=3xlog3y' = 3^x \log 3y′=3xlog3(2) y=103x+1y = 10^{3x+1}y=103x+1y′=(103x+1)′y' = (10^{3x+1})'y′=(103x+1)′合成関数の微分を用いる。まずu=3x+1u = 3x+1u=3x+1とおくと、y=10uy = 10^uy=10udydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}dxdy=dudydxdudydu=(10u)′=10ulog10=103x+1log10\frac{dy}{du} = (10^u)' = 10^u \log 10 = 10^{3x+1} \log 10dudy=(10u)′=10ulog10=103x+1log10dudx=(3x+1)′=3\frac{du}{dx} = (3x+1)' = 3dxdu=(3x+1)′=3よって、y′=3⋅103x+1log10y' = 3 \cdot 10^{3x+1} \log 10y′=3⋅103x+1log10(3) y=2x+2−x2y = \frac{2^x + 2^{-x}}{2}y=22x+2−xy′=(2x+2−x2)′y' = (\frac{2^x + 2^{-x}}{2})'y′=(22x+2−x)′y′=12(2x+2−x)′y' = \frac{1}{2} (2^x + 2^{-x})'y′=21(2x+2−x)′y′=12((2x)′+(2−x)′)y' = \frac{1}{2} ((2^x)' + (2^{-x})')y′=21((2x)′+(2−x)′)y′=12(2xlog2+(2−x)′)y' = \frac{1}{2} (2^x \log 2 + (2^{-x})')y′=21(2xlog2+(2−x)′)u=−xu = -xu=−x とおくと、(2−x)′=(2u)′=(2ulog2)⋅u′=2−xlog2⋅(−1)=−2−xlog2(2^{-x})' = (2^u)' = (2^u \log 2) \cdot u' = 2^{-x} \log 2 \cdot (-1) = -2^{-x} \log 2(2−x)′=(2u)′=(2ulog2)⋅u′=2−xlog2⋅(−1)=−2−xlog2よって、y′=12(2xlog2−2−xlog2)y' = \frac{1}{2} (2^x \log 2 - 2^{-x} \log 2)y′=21(2xlog2−2−xlog2)y′=log22(2x−2−x)y' = \frac{\log 2}{2} (2^x - 2^{-x})y′=2log2(2x−2−x)3. 最終的な答え(1) y′=3xlog3y' = 3^x \log 3y′=3xlog3(2) y′=3⋅103x+1log10y' = 3 \cdot 10^{3x+1} \log 10y′=3⋅103x+1log10(3) y′=log22(2x−2−x)y' = \frac{\log 2}{2} (2^x - 2^{-x})y′=2log2(2x−2−x)