与えられた問題は、次の定積分を計算することです。 $\int_{0}^{\infty} \frac{dx}{x^4 + 4}$解析学定積分部分分数分解積分2025/7/221. 問題の内容与えられた問題は、次の定積分を計算することです。∫0∞dxx4+4\int_{0}^{\infty} \frac{dx}{x^4 + 4}∫0∞x4+4dx2. 解き方の手順まず、x4+4x^4 + 4x4+4を因数分解します。x4+4=x4+4x2+4−4x2=(x2+2)2−(2x)2=(x2+2x+2)(x2−2x+2)x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 = (x^2 + 2x + 2)(x^2 - 2x + 2)x4+4=x4+4x2+4−4x2=(x2+2)2−(2x)2=(x2+2x+2)(x2−2x+2)次に、部分分数分解を行います。1x4+4=Ax+Bx2+2x+2+Cx+Dx2−2x+2\frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2}x4+41=x2+2x+2Ax+B+x2−2x+2Cx+D1=(Ax+B)(x2−2x+2)+(Cx+D)(x2+2x+2)1 = (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2)1=(Ax+B)(x2−2x+2)+(Cx+D)(x2+2x+2)1=Ax3−2Ax2+2Ax+Bx2−2Bx+2B+Cx3+2Cx2+2Cx+Dx2+2Dx+2D1 = Ax^3 - 2Ax^2 + 2Ax + Bx^2 - 2Bx + 2B + Cx^3 + 2Cx^2 + 2Cx + Dx^2 + 2Dx + 2D1=Ax3−2Ax2+2Ax+Bx2−2Bx+2B+Cx3+2Cx2+2Cx+Dx2+2Dx+2D1=(A+C)x3+(−2A+B+2C+D)x2+(2A−2B+2C+2D)x+(2B+2D)1 = (A+C)x^3 + (-2A+B+2C+D)x^2 + (2A-2B+2C+2D)x + (2B+2D)1=(A+C)x3+(−2A+B+2C+D)x2+(2A−2B+2C+2D)x+(2B+2D)係数を比較すると、A+C=0A+C = 0A+C=0−2A+B+2C+D=0-2A+B+2C+D = 0−2A+B+2C+D=02A−2B+2C+2D=02A-2B+2C+2D = 02A−2B+2C+2D=02B+2D=12B+2D = 12B+2D=1これらの式を解くと、A=−1/8,B=1/4,C=1/8,D=1/4A = -1/8, B = 1/4, C = 1/8, D = 1/4A=−1/8,B=1/4,C=1/8,D=1/4したがって、1x4+4=−x/8+1/4x2+2x+2+x/8+1/4x2−2x+2\frac{1}{x^4 + 4} = \frac{-x/8 + 1/4}{x^2 + 2x + 2} + \frac{x/8 + 1/4}{x^2 - 2x + 2}x4+41=x2+2x+2−x/8+1/4+x2−2x+2x/8+1/4∫1x4+4dx=∫−x/8+1/4x2+2x+2dx+∫x/8+1/4x2−2x+2dx\int \frac{1}{x^4 + 4} dx = \int \frac{-x/8 + 1/4}{x^2 + 2x + 2} dx + \int \frac{x/8 + 1/4}{x^2 - 2x + 2} dx∫x4+41dx=∫x2+2x+2−x/8+1/4dx+∫x2−2x+2x/8+1/4dx∫−x/8+1/4x2+2x+2dx=∫−(x+1)/8+3/8(x+1)2+1dx=−116ln(x2+2x+2)+38arctan(x+1)\int \frac{-x/8 + 1/4}{x^2 + 2x + 2} dx = \int \frac{-(x+1)/8 + 3/8}{(x+1)^2 + 1} dx = -\frac{1}{16} \ln(x^2 + 2x + 2) + \frac{3}{8} \arctan(x+1)∫x2+2x+2−x/8+1/4dx=∫(x+1)2+1−(x+1)/8+3/8dx=−161ln(x2+2x+2)+83arctan(x+1)∫x/8+1/4x2−2x+2dx=∫(x−1)/8+3/8(x−1)2+1dx=116ln(x2−2x+2)+38arctan(x−1)\int \frac{x/8 + 1/4}{x^2 - 2x + 2} dx = \int \frac{(x-1)/8 + 3/8}{(x-1)^2 + 1} dx = \frac{1}{16} \ln(x^2 - 2x + 2) + \frac{3}{8} \arctan(x-1)∫x2−2x+2x/8+1/4dx=∫(x−1)2+1(x−1)/8+3/8dx=161ln(x2−2x+2)+83arctan(x−1)∫0∞1x4+4dx=[−116ln(x2+2x+2)+38arctan(x+1)+116ln(x2−2x+2)+38arctan(x−1)]0∞\int_{0}^{\infty} \frac{1}{x^4 + 4} dx = [-\frac{1}{16} \ln(x^2 + 2x + 2) + \frac{3}{8} \arctan(x+1) + \frac{1}{16} \ln(x^2 - 2x + 2) + \frac{3}{8} \arctan(x-1)]_{0}^{\infty}∫0∞x4+41dx=[−161ln(x2+2x+2)+83arctan(x+1)+161ln(x2−2x+2)+83arctan(x−1)]0∞=[116ln(x2−2x+2x2+2x+2)+38(arctan(x+1)+arctan(x−1))]0∞= [\frac{1}{16} \ln(\frac{x^2 - 2x + 2}{x^2 + 2x + 2}) + \frac{3}{8} (\arctan(x+1) + \arctan(x-1))]_{0}^{\infty}=[161ln(x2+2x+2x2−2x+2)+83(arctan(x+1)+arctan(x−1))]0∞=116ln(1)+38(π2+π2)−(116ln(1)+38(π4+−π4))= \frac{1}{16} \ln(1) + \frac{3}{8}(\frac{\pi}{2} + \frac{\pi}{2}) - (\frac{1}{16} \ln(1) + \frac{3}{8} (\frac{\pi}{4} + \frac{-\pi}{4})) =161ln(1)+83(2π+2π)−(161ln(1)+83(4π+4−π))=0+38⋅π2−0−0=3π16= 0 + \frac{3}{8} \cdot \frac{\pi}{2} - 0 - 0 = \frac{3\pi}{16}=0+83⋅2π−0−0=163π3. 最終的な答え3π16\frac{3\pi}{16}163π