1. 問題の内容
与えられた複素数の割り算 を計算し、簡単な形に表す問題です。
2. 解き方の手順
複素数の割り算を行うには、分母の共役複素数を分母と分子の両方に掛けます。
分母 の共役複素数は です。したがって、
\frac{3+i}{1+2i} = \frac{(3+i)(1-2i)}{(1+2i)(1-2i)}
分子を展開します。
(3+i)(1-2i) = 3 - 6i + i - 2i^2 = 3 - 5i - 2(-1) = 3 - 5i + 2 = 5 - 5i
分母を展開します。
(1+2i)(1-2i) = 1 - 2i + 2i - 4i^2 = 1 - 4(-1) = 1 + 4 = 5
したがって、
\frac{3+i}{1+2i} = \frac{5-5i}{5}
最後に、分数を約分します。
\frac{5-5i}{5} = \frac{5}{5} - \frac{5i}{5} = 1 - i