$y$ は $x$ に反比例し、グラフは点 $(-2, -9)$ を通る。$y$ を $x$ の式で表してください。

代数学反比例関数比例定数
2025/7/22

1. 問題の内容

yyxx に反比例し、グラフは点 (2,9)(-2, -9) を通る。yyxx の式で表してください。

2. 解き方の手順

反比例の式は y=axy = \frac{a}{x} で表されます。ここで、aa は比例定数です。
グラフが点 (2,9)(-2, -9) を通るということは、x=2x = -2 のとき y=9y = -9 であるということです。
これを反比例の式に代入して、aa を求めます。
9=a2-9 = \frac{a}{-2}
両辺に 2-2 を掛けて、aa を求めます。
a=9×(2)=18a = -9 \times (-2) = 18
したがって、反比例の式は y=18xy = \frac{18}{x} となります。

3. 最終的な答え

y=18xy = \frac{18}{x}

「代数学」の関連問題

問題は2つあります。 * 1つ目は、指数関数 $y = (\frac{1}{2})^x$ のグラフの特徴を表している説明を選択する問題です。 * 2つ目は、対数関数 $y = \log_2 x...

指数関数対数関数グラフ交点
2025/7/23

以下の連立方程式を解く問題です。 $ \begin{cases} 2(x+y) = x+1 \\ 4x-3y = 15 \end{cases} $

連立方程式一次方程式
2025/7/23

問題は以下の通りです。 (1) 指数関数 $y = 2^x$ のグラフの特徴を表す説明を選ぶ問題。 (2) 対数関数 $y = \log_2 x$ のグラフの特徴を表す説明を選ぶ問題。 (3) 対数関...

指数関数対数関数グラフ方程式
2025/7/23

画像にある数式の中から、以下の連立方程式を解きます。 (17) $2x - y = 4x + y = 3$ (18) $x - y = 2x + 3y = 5$ (19) $3x + y = x + ...

連立方程式方程式
2025/7/23

連立方程式 $2x+y=1=-x-y$ を解いて、$x$ と $y$ の値を求めます。

連立方程式一次方程式代入法
2025/7/23

次の連立方程式を解きます。 $\begin{cases} 0.4x - 0.1y = 0.3 \\ -3x + y = -2 \end{cases}$

連立方程式一次方程式代入法
2025/7/23

$0.7x + 0.1(x - 1) = 1.5$

連立方程式代入法一次方程式
2025/7/23

以下の連立方程式を解きます。 $ \begin{cases} 2(x+y) = x+1 \\ 4x-3y = 15 \end{cases} $

連立方程式一次方程式代入法
2025/7/23

画像に記載されている3つの問題を解きます。 (1) $\log_3 5$ の値を求めます。ただし、$\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とします...

対数指数対数関数指数関数底の変換
2025/7/23

$x + 0.3y = 2.4$ $x = 2.4 - 0.3y$

連立方程式代入法線形方程式
2025/7/23