(1) $\lim_{x\to\infty} \frac{7x^2-6x-5}{4x^2+2x+1}$ の極限を求めよ。 (2) $\lim_{x\to1} \frac{\sqrt{x}-\sqrt{2-x}}{x-1}$ の極限を求めよ。解析学極限関数の極限有理化2025/7/221. 問題の内容(1) limx→∞7x2−6x−54x2+2x+1\lim_{x\to\infty} \frac{7x^2-6x-5}{4x^2+2x+1}limx→∞4x2+2x+17x2−6x−5 の極限を求めよ。(2) limx→1x−2−xx−1\lim_{x\to1} \frac{\sqrt{x}-\sqrt{2-x}}{x-1}limx→1x−1x−2−x の極限を求めよ。2. 解き方の手順(1) 分子と分母を x2x^2x2 で割る。limx→∞7x2−6x−54x2+2x+1=limx→∞7−6x−5x24+2x+1x2\lim_{x\to\infty} \frac{7x^2-6x-5}{4x^2+2x+1} = \lim_{x\to\infty} \frac{7-\frac{6}{x}-\frac{5}{x^2}}{4+\frac{2}{x}+\frac{1}{x^2}}limx→∞4x2+2x+17x2−6x−5=limx→∞4+x2+x217−x6−x25x→∞x\to\inftyx→∞ のとき、1x→0\frac{1}{x}\to 0x1→0、1x2→0\frac{1}{x^2}\to 0x21→0 であるから、limx→∞7−6x−5x24+2x+1x2=7−0−04+0+0=74\lim_{x\to\infty} \frac{7-\frac{6}{x}-\frac{5}{x^2}}{4+\frac{2}{x}+\frac{1}{x^2}} = \frac{7-0-0}{4+0+0} = \frac{7}{4}limx→∞4+x2+x217−x6−x25=4+0+07−0−0=47(2) 分子を有理化する。x−2−xx−1=(x−2−x)(x+2−x)(x−1)(x+2−x)=x−(2−x)(x−1)(x+2−x)=2x−2(x−1)(x+2−x)=2(x−1)(x−1)(x+2−x)=2x+2−x\frac{\sqrt{x}-\sqrt{2-x}}{x-1} = \frac{(\sqrt{x}-\sqrt{2-x})(\sqrt{x}+\sqrt{2-x})}{(x-1)(\sqrt{x}+\sqrt{2-x})} = \frac{x-(2-x)}{(x-1)(\sqrt{x}+\sqrt{2-x})} = \frac{2x-2}{(x-1)(\sqrt{x}+\sqrt{2-x})} = \frac{2(x-1)}{(x-1)(\sqrt{x}+\sqrt{2-x})} = \frac{2}{\sqrt{x}+\sqrt{2-x}}x−1x−2−x=(x−1)(x+2−x)(x−2−x)(x+2−x)=(x−1)(x+2−x)x−(2−x)=(x−1)(x+2−x)2x−2=(x−1)(x+2−x)2(x−1)=x+2−x2よって、limx→1x−2−xx−1=limx→12x+2−x=21+2−1=21+1=22=1\lim_{x\to1} \frac{\sqrt{x}-\sqrt{2-x}}{x-1} = \lim_{x\to1} \frac{2}{\sqrt{x}+\sqrt{2-x}} = \frac{2}{\sqrt{1}+\sqrt{2-1}} = \frac{2}{1+1} = \frac{2}{2} = 1limx→1x−1x−2−x=limx→1x+2−x2=1+2−12=1+12=22=13. 最終的な答え(1) 74\frac{7}{4}47(2) 111