$(2\sqrt{3} + \sqrt{5})^2$ を計算する問題です。

代数学式の計算平方根展開
2025/7/22

1. 問題の内容

(23+5)2(2\sqrt{3} + \sqrt{5})^2 を計算する問題です。

2. 解き方の手順

(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2 の公式を利用します。
まず、a=23a = 2\sqrt{3}b=5b = \sqrt{5} とおくと、
(23+5)2=(23)2+2(23)(5)+(5)2(2\sqrt{3} + \sqrt{5})^2 = (2\sqrt{3})^2 + 2(2\sqrt{3})(\sqrt{5}) + (\sqrt{5})^2
(23)2=22(3)2=43=12(2\sqrt{3})^2 = 2^2 \cdot (\sqrt{3})^2 = 4 \cdot 3 = 12
2(23)(5)=435=4152(2\sqrt{3})(\sqrt{5}) = 4\sqrt{3}\sqrt{5} = 4\sqrt{15}
(5)2=5(\sqrt{5})^2 = 5
したがって、
(23+5)2=12+415+5(2\sqrt{3} + \sqrt{5})^2 = 12 + 4\sqrt{15} + 5
12+5=1712 + 5 = 17 より、
(23+5)2=17+415(2\sqrt{3} + \sqrt{5})^2 = 17 + 4\sqrt{15}

3. 最終的な答え

17+41517 + 4\sqrt{15}

「代数学」の関連問題

商品Pの価格は商品Qの価格の1.5倍であった。その後、どちらも200円値上がりした結果、商品Pの価格は商品Qの価格の1.4倍になった。現在の商品の価格を求めよ。

方程式文章問題一次方程式
2025/7/22

与えられた式 $\frac{1}{8}(x+3y) - \frac{1}{6}(2x+y)$ を簡略化せよ。

式の簡略化分数一次式
2025/7/22

与えられた8個の2次方程式を解く問題です。

二次方程式因数分解方程式の解
2025/7/22

与えられた5x5行列の行列式を計算する問題です。行列は以下の通りです。 $ \begin{vmatrix} 3 & 5 & 1 & 2 & -1 \\ 2 & 6 & 0 & 9 & 1 \\ 0 &...

行列式線形代数余因子展開
2025/7/22

与えられた関数の定義域に対する値域を求めます。 (1) $y = 2x^2$ ($1 \le x < 2$) (2) $y = 2x^2$ ($-1 \le x < 2$)

二次関数定義域値域最大値最小値
2025/7/22

与えられた式を計算して簡略化します。問題の式は以下の通りです。 $\frac{2}{3 + \sqrt{5} - \sqrt{14}} + \frac{2}{3 + \sqrt{5} + \sqrt{...

式の計算有理化平方根
2025/7/22

実数 $a$, $b$, $x$ が与えられており、以下の条件を満たします。 * $a+b=3$ * $ab=1$ * $x-\frac{1}{x}=2$ また、$A = ax - \fr...

式の計算代数方程式式の値分数式
2025/7/22

問題文は次の計算の答えがあうように、ア〜エに×, ÷の記号のどちらかを当てはめるというものです。 (1) $18x^2y^3$ ア $9x$ イ $y = 2xy^2$ (2) $3a^2$ ウ $4...

式の計算割り算文字式
2025/7/22

$a-b = \sqrt{3}$、 $ab=1$ を満たす正の数 $a$、$b$ がある。 (1) $a^2+b^2$ の値と、$a+b$ の値をそれぞれ求めよ。 (2) $x = a^2-\sqrt...

式の計算平方根数式変形絶対値
2025/7/22

$a = -5$、$b = \frac{1}{4}$ のとき、次の式の値を求めます。 (1) $3(-3a - b) - 5(-a + b)$ (2) $8ab^2 \div (-2b)$ (3) $...

式の計算代入展開約分
2025/7/22