次の極限値を求める問題です。 $\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2}$

解析学極限有理化関数の極限
2025/7/22

1. 問題の内容

次の極限値を求める問題です。
limx2x+73x2\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2}

2. 解き方の手順

この極限は、x=2x=2 を代入すると 00\frac{0}{0} の不定形になるため、工夫が必要です。分子の有理化を行います。
x+7+3\sqrt{x+7} + 3 を分子と分母にかけます。
limx2x+73x2=limx2(x+73)(x+7+3)(x2)(x+7+3)\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2} = \lim_{x \to 2} \frac{(\sqrt{x+7}-3)(\sqrt{x+7}+3)}{(x-2)(\sqrt{x+7}+3)}
分子を展開すると、
(x+73)(x+7+3)=(x+7)9=x2(\sqrt{x+7}-3)(\sqrt{x+7}+3) = (x+7) - 9 = x - 2
したがって、
limx2x2(x2)(x+7+3)=limx21x+7+3\lim_{x \to 2} \frac{x-2}{(x-2)(\sqrt{x+7}+3)} = \lim_{x \to 2} \frac{1}{\sqrt{x+7}+3}
x2x \to 2 のとき、x+72+7=9=3\sqrt{x+7} \to \sqrt{2+7} = \sqrt{9} = 3 なので、
limx21x+7+3=13+3=16\lim_{x \to 2} \frac{1}{\sqrt{x+7}+3} = \frac{1}{3+3} = \frac{1}{6}

3. 最終的な答え

16\frac{1}{6}

「解析学」の関連問題

$\tan^{-1}(\tan(\frac{2}{3}\pi))$ の値を求める問題です。

三角関数逆三角関数tan値域
2025/7/26

問題2.2.1では、逆三角関数の値を求める問題です。具体的には、 (1) $cos^{-1}(-\frac{1}{2})$ (2) $tan^{-1}(tan(\frac{3}{4}\pi))$ (3...

逆三角関数三角関数計算等式
2025/7/26

関数 $f(x) = x^3 - 9x^2 + 15x + 7$ について、以下の問いに答えます。 (1) $f(x)$ の増減を調べ、極値を求め、極値をとる $x$ の値を求めます。 (2) $k$...

微分極値増減三次関数方程式の解
2025/7/26

定積分 $\int_{\frac{1}{2}}^{\frac{5}{4}} \sqrt{18x-8} \, dx$ を計算します。

定積分置換積分不定積分計算
2025/7/26

数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $S_n = 2^{n+1} - n - 2$ で与えられているとき、以下の問いに答えます。 (1) 数列 $\{a_n\}...

数列級数等比数列和の公式
2025/7/26

放物線 $C: y = -x^2 + 3$ について、以下の問題を解きます。 (1) 点 $(1,6)$ から $C$ に引いた接線の方程式を求めます。 (2) (1) で求めた2本の接線と $C$ ...

放物線接線積分面積
2025/7/26

媒介変数 $t$ を用いて $x = t^2 e^{2t}$ および $y = (t^2 + t + 1)e^t$ と表されるとき、$\frac{dy}{dx}$ を計算する問題です。画像の計算過程に...

微分媒介変数表示合成関数の微分
2025/7/26

与えられた関数 $y = (\log_e x)^x$ の微分 $y'$ を求める問題です。ここで、$\log_e x$ は自然対数を表します。

微分合成関数の微分対数関数自然対数
2025/7/26

関数 $y = (x+1)\log_e(x(x+1))$ の導関数 $y' = \frac{dy}{dx}$ を求めます。

導関数微分対数関数
2025/7/26

画像に示された数学の問題は、微分、n次導関数の表示、および極限を求める問題を含みます。具体的には以下の通りです。 (1) $(x^2 + x + 1)^5$ の微分 (2) $\sin^2 x - \...

微分n次導関数極限合成関数の微分ライプニッツの公式ロピタルの定理
2025/7/26