$\lim_{x \to 0} \frac{1}{x} \left( 2 - \frac{6}{x+3} \right)$ を求めよ。解析学極限関数の極限2025/7/221. 問題の内容limx→01x(2−6x+3)\lim_{x \to 0} \frac{1}{x} \left( 2 - \frac{6}{x+3} \right)limx→0x1(2−x+36) を求めよ。2. 解き方の手順まず、2−6x+32 - \frac{6}{x+3}2−x+36 を計算します。2−6x+3=2(x+3)−6x+3=2x+6−6x+3=2xx+32 - \frac{6}{x+3} = \frac{2(x+3) - 6}{x+3} = \frac{2x+6-6}{x+3} = \frac{2x}{x+3}2−x+36=x+32(x+3)−6=x+32x+6−6=x+32x次に、与えられた極限を計算します。limx→01x(2−6x+3)=limx→01x⋅2xx+3=limx→02xx(x+3)=limx→02x+3\lim_{x \to 0} \frac{1}{x} \left( 2 - \frac{6}{x+3} \right) = \lim_{x \to 0} \frac{1}{x} \cdot \frac{2x}{x+3} = \lim_{x \to 0} \frac{2x}{x(x+3)} = \lim_{x \to 0} \frac{2}{x+3}limx→0x1(2−x+36)=limx→0x1⋅x+32x=limx→0x(x+3)2x=limx→0x+32x→0x \to 0x→0 のとき、x+3→3x+3 \to 3x+3→3 となるので、limx→02x+3=20+3=23\lim_{x \to 0} \frac{2}{x+3} = \frac{2}{0+3} = \frac{2}{3}limx→0x+32=0+32=323. 最終的な答え23\frac{2}{3}32