定理3.2.3とその証明の一部が示されています。 (1) 2つの行を入れ替えると行列式は-1倍になることを示しています。 (2) 2つの行が等しい行列の行列式は0であることを示唆しています。

代数学行列式線形代数行列
2025/7/23

1. 問題の内容

定理3.2.3とその証明の一部が示されています。
(1) 2つの行を入れ替えると行列式は-1倍になることを示しています。
(2) 2つの行が等しい行列の行列式は0であることを示唆しています。

2. 解き方の手順

(1)の問題は行列のii行とjj行を入れ替えたとき、行列式が-1倍になることを示しています。与えられた行列の行列式を計算することを考えます。行列式は、置換σ\sigmaに関する項の和として表されます。ii行とjj行を入れ替えることは、置換を入れ替えることに対応し、行列式の符号を反転させます。
(2)の問題は、2つの行が等しい場合、行列式が0になることを示唆しています。これは、ii行とjj行が等しい場合、行列を入れ替えても行列は変わらないが、行列式の符号は反転するため、行列式は0でなければならないという事実から導かれます。

3. 最終的な答え

(1) 2つの行を入れ替えると行列式は-1倍になる。
(2) 2つの行が等しい行列の行列式は0である。

「代数学」の関連問題

次の4つの2次不等式を解きます。 (1) $x^2 - 4x + 3 > 0$ (2) $-x^2 + 2x + 1 \geq 0$ (3) $x^2 - 4x + 4 \leq 0$ (4) $x^...

二次不等式因数分解解の公式判別式
2025/7/23

与えられた方程式は、$ \frac{1}{3}(4x-1) = \frac{1}{9}(7x-3) $です。この方程式を解いて、$x$ の値を求める問題です。

一次方程式方程式の解法分数
2025/7/23

与えられた方程式 $(x+4)(x-2) = (x-3)^2$ を解く問題です。

方程式一次方程式展開
2025/7/23

$x = -\frac{1}{2}$ と $y = -4$ のとき、次の式の値を求める。 (1) $3(2x-y) - 2(x-y)$ (2) $(x-y+3) - (y+x-3)$ (3) $6xy...

式の計算代入展開一次式分数
2025/7/23

関数 $y = -4x^2$ において、$x$ の値が $a$ から $a+3$ まで増加するときの変化の割合が $-\frac{4}{3}$ である。このとき、$a$ の値を求めよ。

二次関数変化の割合方程式
2025/7/23

与えられた式を計算して簡単にします。式は $\frac{1}{2}(3x-4) - \frac{1}{6}(9x-7)$ です。

式の計算一次式分配法則分数
2025/7/23

与えられた問題は3つの部分から構成されています。 1. 関数 $y = \log_3 x$ の定義域が $\frac{1}{27} < x \le \sqrt{9}$ であるとき、値域を求めます。

対数対数関数不等式方程式真数条件定義域値域
2025/7/23

与えられた2つの二次関数について、それぞれのグラフと $x$ 軸との共有点の座標を求める。 (1) $y = x^2 + x - 6$ (2) $y = -x^2 + 2x - 1$

二次関数二次方程式グラフ共有点因数分解
2025/7/23

与えられた式 $(x+2)^2 - (x-1)(x-4)$ を展開し、整理して簡単にしてください。

展開式の整理多項式
2025/7/23

$\sin\theta + \cos\theta = \frac{1}{4}$ のとき、$\frac{1}{\sin\theta} + \frac{1}{\cos\theta}$ の値を求めよ。

三角関数式の計算相互関係
2025/7/23