図において、$\angle x$と$\angle y$の大きさを求めよ。幾何学角度四角形三角形内角の和円に内接する四角形2025/4/41. 問題の内容図において、∠x\angle x∠xと∠y\angle y∠yの大きさを求めよ。2. 解き方の手順四角形ABCDの内角の和は360度である。∠B=30∘+∠ABD\angle B = 30^\circ + \angle ABD∠B=30∘+∠ABD∠C=42∘+∠ACD\angle C = 42^\circ + \angle ACD∠C=42∘+∠ACD∠D=57∘+x\angle D = 57^\circ + x∠D=57∘+x∠A=57∘+y\angle A = 57^\circ + y∠A=57∘+y三角形ABDにおいて、∠ADB=57∘\angle ADB = 57^\circ∠ADB=57∘∠BAD=y\angle BAD = y∠BAD=y∠ABD=180∘−57∘−y=123∘−y\angle ABD = 180^\circ - 57^\circ - y = 123^\circ - y∠ABD=180∘−57∘−y=123∘−y三角形ACDにおいて、∠DAC=57∘\angle DAC = 57^\circ∠DAC=57∘∠ACD=42∘\angle ACD = 42^\circ∠ACD=42∘∠ADC=180∘−57∘−42∘=81∘\angle ADC = 180^\circ - 57^\circ - 42^\circ = 81^\circ∠ADC=180∘−57∘−42∘=81∘四角形ABCDの内角の和は360度なので、(57∘+y)+(30∘+123∘−y)+(42∘+x)+(57∘+x)=360∘(57^\circ + y) + (30^\circ + 123^\circ - y) + (42^\circ + x) + (57^\circ + x) = 360^\circ(57∘+y)+(30∘+123∘−y)+(42∘+x)+(57∘+x)=360∘57∘+y+30∘+123∘−y+42∘+x+57∘+x=360∘57^\circ + y + 30^\circ + 123^\circ - y + 42^\circ + x + 57^\circ + x = 360^\circ57∘+y+30∘+123∘−y+42∘+x+57∘+x=360∘309∘+2x=360∘309^\circ + 2x = 360^\circ309∘+2x=360∘2x=360∘−309∘=51∘2x = 360^\circ - 309^\circ = 51^\circ2x=360∘−309∘=51∘x=51∘2=25.5∘x = \frac{51^\circ}{2} = 25.5^\circx=251∘=25.5∘三角形ADCにおいて、∠ADC=x+57∘\angle ADC = x + 57^\circ∠ADC=x+57∘ であるから、x=25.5∘x = 25.5^\circx=25.5∘ より、∠ADC=25.5∘+57∘=82.5∘\angle ADC = 25.5^\circ + 57^\circ = 82.5^\circ∠ADC=25.5∘+57∘=82.5∘57∘+42∘+82.5∘=181.5∘57^\circ + 42^\circ + 82.5^\circ = 181.5^\circ57∘+42∘+82.5∘=181.5∘ これは矛盾∠ABC+∠ADC=(30∘+y)+(57∘+x)=180∘\angle ABC + \angle ADC = (30^\circ + y) + (57^\circ + x) = 180^\circ∠ABC+∠ADC=(30∘+y)+(57∘+x)=180∘y+x=180∘−30∘−57∘=93∘y + x = 180^\circ - 30^\circ - 57^\circ = 93^\circy+x=180∘−30∘−57∘=93∘∠BCD+∠BAD=(42∘+x)+(57∘+y)=180∘\angle BCD + \angle BAD = (42^\circ + x) + (57^\circ + y) = 180^\circ∠BCD+∠BAD=(42∘+x)+(57∘+y)=180∘x+y=180∘−42∘−57∘=81∘x + y = 180^\circ - 42^\circ - 57^\circ = 81^\circx+y=180∘−42∘−57∘=81∘これは矛盾四角形ABCDについて、∠A+∠B+∠C+∠D=360∘\angle A + \angle B + \angle C + \angle D = 360^\circ∠A+∠B+∠C+∠D=360∘(57∘+y)+(30∘+∠ABD)+(42∘+x)+(57∘+x)=360∘(57^\circ + y) + (30^\circ + \angle ABD) + (42^\circ + x) + (57^\circ + x) = 360^\circ(57∘+y)+(30∘+∠ABD)+(42∘+x)+(57∘+x)=360∘三角形ABDについて、∠BAD+∠ABD+∠ADB=180∘\angle BAD + \angle ABD + \angle ADB = 180^\circ∠BAD+∠ABD+∠ADB=180∘y+∠ABD+57∘=180∘y + \angle ABD + 57^\circ = 180^\circy+∠ABD+57∘=180∘∠ABD=123∘−y\angle ABD = 123^\circ - y∠ABD=123∘−y(57∘+y)+(30∘+123∘−y)+(42∘+x)+(57∘+x)=360∘(57^\circ + y) + (30^\circ + 123^\circ - y) + (42^\circ + x) + (57^\circ + x) = 360^\circ(57∘+y)+(30∘+123∘−y)+(42∘+x)+(57∘+x)=360∘57∘+y+30∘+123∘−y+42∘+x+57∘+x=360∘57^\circ + y + 30^\circ + 123^\circ - y + 42^\circ + x + 57^\circ + x = 360^\circ57∘+y+30∘+123∘−y+42∘+x+57∘+x=360∘309∘+2x=360∘309^\circ + 2x = 360^\circ309∘+2x=360∘2x=51∘2x = 51^\circ2x=51∘x=25.5∘x = 25.5^\circx=25.5∘四角形ABCDは円に内接するので、∠ABC+∠ADC=180∘\angle ABC + \angle ADC = 180^\circ∠ABC+∠ADC=180∘(30∘+y)+(57∘+x)=180∘(30^\circ + y) + (57^\circ + x) = 180^\circ(30∘+y)+(57∘+x)=180∘30∘+y+57∘+25.5∘=180∘30^\circ + y + 57^\circ + 25.5^\circ = 180^\circ30∘+y+57∘+25.5∘=180∘y+112.5∘=180∘y + 112.5^\circ = 180^\circy+112.5∘=180∘y=67.5∘y = 67.5^\circy=67.5∘3. 最終的な答え∠x=25.5∘\angle x = 25.5^\circ∠x=25.5∘∠y=67.5∘\angle y = 67.5^\circ∠y=67.5∘