6人の中から班長1人と副班長1人を選ぶ場合の選び方の総数を求めよ。

確率論・統計学組み合わせ順列場合の数
2025/7/23

1. 問題の内容

6人の中から班長1人と副班長1人を選ぶ場合の選び方の総数を求めよ。

2. 解き方の手順

まず、6人の中から班長を選ぶ方法を考えます。これは6人の中から1人を選ぶことになるので、6通りの選び方があります。
次に、班長に選ばれた人以外の5人の中から副班長を選びます。これは5人の中から1人を選ぶことになるので、5通りの選び方があります。
したがって、班長と副班長の選び方の総数は、それぞれの選び方の数を掛け合わせたものになります。
6×5=306 \times 5 = 30

3. 最終的な答え

30通り

「確率論・統計学」の関連問題

9人の生徒を、5人、2人、2人の3組に分ける分け方は何通りあるかを求める問題です。

組み合わせ場合の数順列
2025/7/23

2個のサイコロを同時に投げるとき、出た目の最大値が3となる確率を求めよ。

確率サイコロ最大値
2025/7/23

3つの箱A, B, Cがある。箱Aには赤玉3個、白玉2個、箱Bには赤玉3個、白玉4個が入っている。箱Cは空である。箱Aと箱Bからそれぞれ1個ずつ玉を取り出し、箱Cに入れた。このとき、以下の問いに答えよ...

確率条件付き確率場合の数
2025/7/23

与えられたデータセットの不偏分散と標準偏差を求めます。標準偏差は有効数字を考慮し、近似値で表します。問1のデータは{53, 65, 48, 57, 62}、問2のデータは{165, 157, 152,...

不偏分散標準偏差統計
2025/7/23

大小2個のサイコロを同時に投げ、大きいサイコロの出目を $X$、小さいサイコロの出目を $Y$ とするとき、$X+Y$ と $3X - 2Y$ の期待値を求めます。

期待値確率サイコロ線形性
2025/7/23

大小2つのサイコロを同時に投げ、大きいサイコロの出目をX、小さいサイコロの出目をYとする。 $E(X) = \frac{8}{9}$、$E(Y) = \frac{10}{11}$ のとき、$E(X+Y...

期待値確率サイコロ線形性
2025/7/23

白玉5個と黒玉2個が入っている袋から2個の玉を同時に取り出す。取り出された2個の玉に含まれる白玉の個数をXとする。Xの確率分布が与えられており、確率$p_1$と$p_2$を求める。

確率確率分布組み合わせ
2025/7/23

大小2つのサイコロを同時に投げるとき、大きいサイコロの出目を $X$ 、小さいサイコロの出目を $Y$ とします。このとき、 $E(X) = 8/9$ 、 $E(Y) = 10/11$ であり、$E(...

期待値確率変数サイコロ線形性
2025/7/23

白玉5個と黒玉2個が入っている袋から2個の玉を同時に取り出すとき、取り出された2個の玉に含まれている白玉の個数を $X$ とします。$X$ の確率分布が与えられており、確率 $p_1$ と $p_2$...

確率分布期待値組み合わせ
2025/7/23

与えられた数式の値を計算する問題です。 数式は、$6C_1 \cdot (\frac{1}{100})^1 \cdot (\frac{99}{100})^5$ です。

二項分布組み合わせ確率
2025/7/23