直角三角形ABCにおいて、$AB=4$, $BC=\sqrt{7}$, $AC=3$のとき、$\sin C$の値を求めよ。

幾何学三角比直角三角形ピタゴラスの定理sin
2025/7/23

1. 問題の内容

直角三角形ABCにおいて、AB=4AB=4, BC=7BC=\sqrt{7}, AC=3AC=3のとき、sinC\sin Cの値を求めよ。

2. 解き方の手順

直角三角形ABCにおいて、どの角が直角であるかをまず確認します。
ピタゴラスの定理、a2+b2=c2a^2 + b^2 = c^2 が成り立つかを確認します。
AB2=42=16AB^2 = 4^2 = 16
BC2=(7)2=7BC^2 = (\sqrt{7})^2 = 7
AC2=32=9AC^2 = 3^2 = 9
BC2+AC2=7+9=16=AB2BC^2 + AC^2 = 7 + 9 = 16 = AB^2
したがって、C=90\angle C = 90^\circであるので、直角はCの角となります。
sinC\sin Cを求める場合、CCが直角であるため、sinC=sin90\sin C = \sin 90^\circとなります。
sin90=1\sin 90^\circ = 1

3. 最終的な答え

1

「幾何学」の関連問題

円に内接する四角形ABCDにおいて、$AB = 3\sqrt{2}$, $BC = 4$, $CD = \sqrt{2}$, $\angle ABC = 45^\circ$ であるとき、辺ADの長さを...

四角形余弦定理内接角度辺の長さ
2025/7/23

$0^\circ < x < 90^\circ$、 $0^\circ < y < 90^\circ$ のとき、次の問いに答えます。 (1) $\sin(x+y)$ と $\sin x + \sin y...

三角関数不等式三角関数の加法定理三角関数の合成
2025/7/23

四角柱の図において、矢印が指し示す部分の名称を答える問題です。

四角柱図形
2025/7/23

$90^\circ \le \theta \le 180^\circ$のとき、以下の(1),(2)の場合について、指定された三角関数の値から、残りの2つの三角関数の値を求めよ。 (1) $\sin \...

三角関数三角比sincostan角度
2025/7/23

木の根元から水平に3m離れた地点から木の先端を見上げたところ、水平面とのなす角が60度だった。目の高さを1.6mとして、木の高さを求める。ただし、$\sqrt{3} = 1.73$とし、小数第2位を四...

三角比tan高さ角度計算
2025/7/23

一辺の長さが6の正四面体OABCがある。辺BCの中点をM、三角形ABCの重心をG、線分OMを2:1に内分する点をHとするとき、以下の問いに答える。 (1) 線分GHの長さを求めよ。 (2) 三角形GM...

空間ベクトル正四面体内分重心面積
2025/7/23

傾斜角10度の坂を200m登ったとき、鉛直方向に何m登ったことになるか、また水平方向に何m進んだことになるかを求める。1m未満は四捨五入する。ただし、$\sin 10^\circ = 0.1736$,...

三角比sincos直角三角形斜辺角度距離
2025/7/23

与えられた2つの直角三角形について、角度$\theta$の$\sin \theta$, $\cos \theta$, $\tan \theta$の値をそれぞれ求めます。

三角比直角三角形sincostanピタゴラスの定理
2025/7/23

$\cos \theta = \frac{4}{5}$ ($0^\circ < \theta < 90^\circ$) のとき、次の式の値を求めよ。 (1) $\sin(180^\circ - \th...

三角関数三角比相互関係角度変換
2025/7/23

平行線l, m, nがあり、これらの平行線を横切る2本の直線が交わっています。線分の長さがいくつか与えられており、$x$ の値を求める問題です。

平行線線分の比比例式相似
2025/7/23