与えられた定積分の値を求めます。具体的には、以下の式を計算します。 $\int_{-2}^{-1} (5x^2 + 3x + 2) dx + \int_{-1}^{2} (5x^2 + 3x + 2) dx + \int_{2}^{1} (5x^2 + 3x + 2) dx$解析学定積分積分計算2025/4/41. 問題の内容与えられた定積分の値を求めます。具体的には、以下の式を計算します。∫−2−1(5x2+3x+2)dx+∫−12(5x2+3x+2)dx+∫21(5x2+3x+2)dx\int_{-2}^{-1} (5x^2 + 3x + 2) dx + \int_{-1}^{2} (5x^2 + 3x + 2) dx + \int_{2}^{1} (5x^2 + 3x + 2) dx∫−2−1(5x2+3x+2)dx+∫−12(5x2+3x+2)dx+∫21(5x2+3x+2)dx2. 解き方の手順まず、不定積分を計算します。∫(5x2+3x+2)dx=53x3+32x2+2x+C\int (5x^2 + 3x + 2) dx = \frac{5}{3}x^3 + \frac{3}{2}x^2 + 2x + C∫(5x2+3x+2)dx=35x3+23x2+2x+C次に、各定積分を計算します。∫−2−1(5x2+3x+2)dx=[53x3+32x2+2x]−2−1=(53(−1)3+32(−1)2+2(−1))−(53(−2)3+32(−2)2+2(−2))=(−53+32−2)−(−403+6−4)=−53+32−2+403−6+4=353+32−4=70+9−246=556\int_{-2}^{-1} (5x^2 + 3x + 2) dx = [\frac{5}{3}x^3 + \frac{3}{2}x^2 + 2x]_{-2}^{-1} = (\frac{5}{3}(-1)^3 + \frac{3}{2}(-1)^2 + 2(-1)) - (\frac{5}{3}(-2)^3 + \frac{3}{2}(-2)^2 + 2(-2)) = (-\frac{5}{3} + \frac{3}{2} - 2) - (-\frac{40}{3} + 6 - 4) = -\frac{5}{3} + \frac{3}{2} - 2 + \frac{40}{3} - 6 + 4 = \frac{35}{3} + \frac{3}{2} - 4 = \frac{70 + 9 - 24}{6} = \frac{55}{6}∫−2−1(5x2+3x+2)dx=[35x3+23x2+2x]−2−1=(35(−1)3+23(−1)2+2(−1))−(35(−2)3+23(−2)2+2(−2))=(−35+23−2)−(−340+6−4)=−35+23−2+340−6+4=335+23−4=670+9−24=655∫−12(5x2+3x+2)dx=[53x3+32x2+2x]−12=(53(2)3+32(2)2+2(2))−(53(−1)3+32(−1)2+2(−1))=(403+6+4)−(−53+32−2)=403+10+53−32+2=453+12−32=15+12−32=27−32=54−32=512\int_{-1}^{2} (5x^2 + 3x + 2) dx = [\frac{5}{3}x^3 + \frac{3}{2}x^2 + 2x]_{-1}^{2} = (\frac{5}{3}(2)^3 + \frac{3}{2}(2)^2 + 2(2)) - (\frac{5}{3}(-1)^3 + \frac{3}{2}(-1)^2 + 2(-1)) = (\frac{40}{3} + 6 + 4) - (-\frac{5}{3} + \frac{3}{2} - 2) = \frac{40}{3} + 10 + \frac{5}{3} - \frac{3}{2} + 2 = \frac{45}{3} + 12 - \frac{3}{2} = 15 + 12 - \frac{3}{2} = 27 - \frac{3}{2} = \frac{54 - 3}{2} = \frac{51}{2}∫−12(5x2+3x+2)dx=[35x3+23x2+2x]−12=(35(2)3+23(2)2+2(2))−(35(−1)3+23(−1)2+2(−1))=(340+6+4)−(−35+23−2)=340+10+35−23+2=345+12−23=15+12−23=27−23=254−3=251∫21(5x2+3x+2)dx=[53x3+32x2+2x]21=(53(1)3+32(1)2+2(1))−(53(2)3+32(2)2+2(2))=(53+32+2)−(403+6+4)=53+32+2−403−10=−353+32−8=−70+9−486=−1096\int_{2}^{1} (5x^2 + 3x + 2) dx = [\frac{5}{3}x^3 + \frac{3}{2}x^2 + 2x]_{2}^{1} = (\frac{5}{3}(1)^3 + \frac{3}{2}(1)^2 + 2(1)) - (\frac{5}{3}(2)^3 + \frac{3}{2}(2)^2 + 2(2)) = (\frac{5}{3} + \frac{3}{2} + 2) - (\frac{40}{3} + 6 + 4) = \frac{5}{3} + \frac{3}{2} + 2 - \frac{40}{3} - 10 = -\frac{35}{3} + \frac{3}{2} - 8 = \frac{-70 + 9 - 48}{6} = \frac{-109}{6}∫21(5x2+3x+2)dx=[35x3+23x2+2x]21=(35(1)3+23(1)2+2(1))−(35(2)3+23(2)2+2(2))=(35+23+2)−(340+6+4)=35+23+2−340−10=−335+23−8=6−70+9−48=6−109最後に、これらの値を足し合わせます。556+512−1096=55+153−1096=996=332\frac{55}{6} + \frac{51}{2} - \frac{109}{6} = \frac{55 + 153 - 109}{6} = \frac{99}{6} = \frac{33}{2}655+251−6109=655+153−109=699=2333. 最終的な答え332\frac{33}{2}233