定積分 $\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} dx$ を計算してください。

解析学定積分三角関数積分計算
2025/7/23

1. 問題の内容

定積分 0π41cos2xdx\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} dx を計算してください。

2. 解き方の手順

まず、被積分関数を簡単にします。1cos2x=sec2x\frac{1}{\cos^2 x} = \sec^2 x です。
したがって、積分は 0π4sec2xdx\int_{0}^{\frac{\pi}{4}} \sec^2 x dx となります。
sec2x\sec^2 x の原始関数は tanx\tan x であることを思い出してください。
したがって、定積分は次のようになります。
0π4sec2xdx=[tanx]0π4=tanπ4tan0=10=1\int_{0}^{\frac{\pi}{4}} \sec^2 x dx = [\tan x]_{0}^{\frac{\pi}{4}} = \tan \frac{\pi}{4} - \tan 0 = 1 - 0 = 1

3. 最終的な答え

1

「解析学」の関連問題

与えられた極限 $\lim_{x \to +0} \frac{(\log x + 1)^2}{4x}$ を計算します。ここで $\log x$ は自然対数とします。

極限自然対数ロピタルの定理
2025/7/25

定積分 $\int_{1}^{2} 3x^2 dx$ を計算してください。

定積分不定積分微積分学の基本定理arctan
2025/7/25

与えられた極限値を求めます。問題は以下の通りです。 $\lim_{x \to +0} \frac{\log x}{x}$ ここで、$\log x$ は自然対数(底が $e$ の対数)を表します。

極限自然対数発散ロピタルの定理
2025/7/25

$a$ を正の定数とする。曲線 $x = a(\theta - \sin\theta), y = a(1 - \cos\theta)$ $(0 \leq \theta \leq 2\pi)$ 上の点P...

パラメータ表示法線極限微分
2025/7/25

曲線 $C: y = x^3 - kx$ 上の点 $A(a, a^3 - ka)$ における接線 $l_1$ を引く。$l_1$ と $C$ の $A$ 以外の交点を $B$ とする。点 $B$ にお...

接線微分関数の最大最小不等式
2025/7/25

次の極限を計算します。 $\lim_{x \to 0} \frac{-x^2 + \sinh^2(2x)}{4\sinh^2(x)}$

極限ロピタルの定理双曲線関数テイラー展開
2025/7/25

与えられた極限の等式 $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$ を証明する。

極限テイラー展開自然対数指数関数
2025/7/25

(1) $\lim_{x \to 0} \frac{\sqrt{1-x} - \sqrt{1+2x}}{x}$ の極限値を求めよ。 (2) $\lim_{x \to -2} \frac{x^2 + a...

極限有理化不定形因数分解定数
2025/7/25

与えられた画像には、以下の3つの極限を求める問題が含まれています。 (1) $\lim_{x\to 0} \frac{x - \sin x}{x^3}$ (3) $\lim_{x\to 0} \fra...

極限ロピタルの定理三角関数逆三角関数テイラー展開
2025/7/25

与えられた二つの二変数関数 $f(x, y)$ について、$(x, y)$ が $(0, 0)$ に近づくときの極限値を求める問題です。 (i) $f(x, y) = \frac{x^2 y^2}{...

多変数関数極限極座標はさみうちの原理
2025/7/25