$\int_0^1 x^2 \arctan(x) dx$ を計算します。解析学定積分部分積分arctan積分計算2025/7/231. 問題の内容∫01x2arctan(x)dx\int_0^1 x^2 \arctan(x) dx∫01x2arctan(x)dx を計算します。2. 解き方の手順部分積分を用いて積分を計算します。u=arctan(x)u = \arctan(x)u=arctan(x) と dv=x2dxdv = x^2 dxdv=x2dx とします。すると、du=11+x2dxdu = \frac{1}{1+x^2} dxdu=1+x21dx と v=x33v = \frac{x^3}{3}v=3x3 となります。部分積分の公式 ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu を用いると、∫x2arctan(x)dx=x33arctan(x)−∫x33⋅11+x2dx=x33arctan(x)−13∫x31+x2dx\int x^2 \arctan(x) dx = \frac{x^3}{3} \arctan(x) - \int \frac{x^3}{3} \cdot \frac{1}{1+x^2} dx = \frac{x^3}{3} \arctan(x) - \frac{1}{3} \int \frac{x^3}{1+x^2} dx∫x2arctan(x)dx=3x3arctan(x)−∫3x3⋅1+x21dx=3x3arctan(x)−31∫1+x2x3dx∫x31+x2dx\int \frac{x^3}{1+x^2} dx∫1+x2x3dx を計算します。x31+x2=x3+x−x1+x2=x(x2+1)−x1+x2=x−x1+x2\frac{x^3}{1+x^2} = \frac{x^3+x-x}{1+x^2} = \frac{x(x^2+1)-x}{1+x^2} = x - \frac{x}{1+x^2}1+x2x3=1+x2x3+x−x=1+x2x(x2+1)−x=x−1+x2xしたがって、∫x31+x2dx=∫(x−x1+x2)dx=∫xdx−∫x1+x2dx=x22−12ln(1+x2)+C\int \frac{x^3}{1+x^2} dx = \int (x - \frac{x}{1+x^2}) dx = \int x dx - \int \frac{x}{1+x^2} dx = \frac{x^2}{2} - \frac{1}{2} \ln(1+x^2) + C∫1+x2x3dx=∫(x−1+x2x)dx=∫xdx−∫1+x2xdx=2x2−21ln(1+x2)+Cよって、∫x2arctan(x)dx=x33arctan(x)−13(x22−12ln(1+x2))+C=x33arctan(x)−x26+16ln(1+x2)+C\int x^2 \arctan(x) dx = \frac{x^3}{3} \arctan(x) - \frac{1}{3} (\frac{x^2}{2} - \frac{1}{2} \ln(1+x^2)) + C = \frac{x^3}{3} \arctan(x) - \frac{x^2}{6} + \frac{1}{6} \ln(1+x^2) + C∫x2arctan(x)dx=3x3arctan(x)−31(2x2−21ln(1+x2))+C=3x3arctan(x)−6x2+61ln(1+x2)+C定積分を計算します。∫01x2arctan(x)dx=[x33arctan(x)−x26+16ln(1+x2)]01=(133arctan(1)−126+16ln(1+12))−(033arctan(0)−026+16ln(1+02))=13⋅π4−16+16ln(2)−0=π12−16+16ln(2)\int_0^1 x^2 \arctan(x) dx = [\frac{x^3}{3} \arctan(x) - \frac{x^2}{6} + \frac{1}{6} \ln(1+x^2)]_0^1 = (\frac{1^3}{3} \arctan(1) - \frac{1^2}{6} + \frac{1}{6} \ln(1+1^2)) - (\frac{0^3}{3} \arctan(0) - \frac{0^2}{6} + \frac{1}{6} \ln(1+0^2)) = \frac{1}{3} \cdot \frac{\pi}{4} - \frac{1}{6} + \frac{1}{6} \ln(2) - 0 = \frac{\pi}{12} - \frac{1}{6} + \frac{1}{6} \ln(2)∫01x2arctan(x)dx=[3x3arctan(x)−6x2+61ln(1+x2)]01=(313arctan(1)−612+61ln(1+12))−(303arctan(0)−602+61ln(1+02))=31⋅4π−61+61ln(2)−0=12π−61+61ln(2)3. 最終的な答えπ12−16+16ln(2)\frac{\pi}{12} - \frac{1}{6} + \frac{1}{6} \ln(2)12π−61+61ln(2)