次の極限を計算します。 $\lim_{x \to 0} (\frac{1}{x} - \frac{1}{\tan^2 x})$解析学極限テイラー展開三角関数ローピタルの定理2025/7/231. 問題の内容次の極限を計算します。limx→0(1x−1tan2x)\lim_{x \to 0} (\frac{1}{x} - \frac{1}{\tan^2 x})limx→0(x1−tan2x1)2. 解き方の手順まず、式を整理します。limx→0(1x−1tan2x)=limx→0tan2x−xxtan2x\lim_{x \to 0} (\frac{1}{x} - \frac{1}{\tan^2 x}) = \lim_{x \to 0} \frac{\tan^2 x - x}{x \tan^2 x}limx→0(x1−tan2x1)=limx→0xtan2xtan2x−xここで、tanx=x+x33+O(x5)\tan x = x + \frac{x^3}{3} + O(x^5)tanx=x+3x3+O(x5) を用いて、tan2x\tan^2 xtan2x を近似します。tan2x=(x+x33+O(x5))2=x2+2x43+O(x6)\tan^2 x = (x + \frac{x^3}{3} + O(x^5))^2 = x^2 + \frac{2x^4}{3} + O(x^6)tan2x=(x+3x3+O(x5))2=x2+32x4+O(x6)分子は、tan2x−x=x2+2x43+O(x6)−x\tan^2 x - x = x^2 + \frac{2x^4}{3} + O(x^6) - xtan2x−x=x2+32x4+O(x6)−x分母は、xtan2x=x(x2+2x43+O(x6))=x3+2x53+O(x7)x \tan^2 x = x(x^2 + \frac{2x^4}{3} + O(x^6)) = x^3 + \frac{2x^5}{3} + O(x^7)xtan2x=x(x2+32x4+O(x6))=x3+32x5+O(x7)したがって、limx→0tan2x−xxtan2x=limx→0x2−x+2x43+O(x6)x3+2x53+O(x7)=limx→0x(x−1)+23x4+O(x6)x3(1+23x2+O(x4))\lim_{x \to 0} \frac{\tan^2 x - x}{x \tan^2 x} = \lim_{x \to 0} \frac{x^2 - x + \frac{2x^4}{3} + O(x^6)}{x^3 + \frac{2x^5}{3} + O(x^7)} = \lim_{x \to 0} \frac{x(x-1)+\frac{2}{3}x^4 + O(x^6)}{x^3(1+\frac{2}{3}x^2 + O(x^4))}limx→0xtan2xtan2x−x=limx→0x3+32x5+O(x7)x2−x+32x4+O(x6)=limx→0x3(1+32x2+O(x4))x(x−1)+32x4+O(x6)=limx→0x(x−1)x3=limx→0x−1x2= \lim_{x \to 0} \frac{x(x-1)}{x^3} = \lim_{x \to 0} \frac{x-1}{x^2}=limx→0x3x(x−1)=limx→0x2x−1x→0x \to 0x→0 に近づくとき、分子は −1-1−1 に近づき、分母は 000 に近づきます。この極限は存在しません。符号を確認します。xxx が正から近づくと、−10+=−∞\frac{-1}{0^+} = -\infty0+−1=−∞ となり、xxx が負から近づくと、−10+=−∞\frac{-1}{0^+} = -\infty0+−1=−∞ となります。したがって、極限は−∞-\infty−∞です。別の解法:limx→0(1x−1tan2x)=limx→0(1x−cos2xsin2x)=limx→0sin2x−xcos2xxsin2x\lim_{x \to 0} (\frac{1}{x} - \frac{1}{\tan^2 x}) = \lim_{x \to 0} (\frac{1}{x} - \frac{\cos^2 x}{\sin^2 x}) = \lim_{x \to 0} \frac{\sin^2 x - x\cos^2 x}{x\sin^2 x}limx→0(x1−tan2x1)=limx→0(x1−sin2xcos2x)=limx→0xsin2xsin2x−xcos2xsinx=x−x36+…\sin x = x - \frac{x^3}{6} + \dotssinx=x−6x3+…sin2x=(x−x36)2+⋯=x2−x43+…\sin^2 x = (x - \frac{x^3}{6})^2 + \dots = x^2 - \frac{x^4}{3} + \dotssin2x=(x−6x3)2+⋯=x2−3x4+…cosx=1−x22+…\cos x = 1 - \frac{x^2}{2} + \dotscosx=1−2x2+…cos2x=(1−x22)2+⋯=1−x2+…\cos^2 x = (1 - \frac{x^2}{2})^2 + \dots = 1 - x^2 + \dotscos2x=(1−2x2)2+⋯=1−x2+…limx→0x2−x43−x(1−x2)x3=limx→0x2−x43−x+x3x3=limx→0x2−x+x3−x43x3=limx→0(1x−1x2+1−… )\lim_{x \to 0} \frac{x^2 - \frac{x^4}{3} - x(1 - x^2)}{x^3} = \lim_{x \to 0} \frac{x^2 - \frac{x^4}{3} - x + x^3}{x^3} = \lim_{x \to 0} \frac{x^2 - x + x^3 - \frac{x^4}{3}}{x^3} = \lim_{x \to 0} (\frac{1}{x} - \frac{1}{x^2} + 1 - \dots)limx→0x3x2−3x4−x(1−x2)=limx→0x3x2−3x4−x+x3=limx→0x3x2−x+x3−3x4=limx→0(x1−x21+1−…)ここで、ローピタルの定理を適用します。limx→0sin2x−xcos2xxsin2x=limx→02sinxcosx−cos2x+2xcosxsinxsin2x+2xsinxcosx\lim_{x \to 0} \frac{\sin^2 x - x\cos^2 x}{x\sin^2 x} = \lim_{x \to 0} \frac{2\sin x \cos x - \cos^2 x + 2x\cos x \sin x}{\sin^2 x + 2x\sin x \cos x}limx→0xsin2xsin2x−xcos2x=limx→0sin2x+2xsinxcosx2sinxcosx−cos2x+2xcosxsinxlimx→0sin(2x)−cos2x+xsin(2x)sin2x+xsin(2x)=limx→0sin(2x)−1+cos(2x)2+xsin(2x)1−cos(2x)2+xsin(2x)\lim_{x \to 0} \frac{\sin(2x) - \cos^2 x + x\sin(2x)}{\sin^2 x + x\sin(2x)} = \lim_{x \to 0} \frac{\sin(2x) - \frac{1+\cos(2x)}{2} + x\sin(2x)}{\frac{1-\cos(2x)}{2} + x\sin(2x)}limx→0sin2x+xsin(2x)sin(2x)−cos2x+xsin(2x)=limx→021−cos(2x)+xsin(2x)sin(2x)−21+cos(2x)+xsin(2x)limx→02sin(2x)−1−cos(2x)+2xsin(2x)1−cos(2x)+2xsin(2x)\lim_{x \to 0} \frac{2\sin(2x) - 1 - \cos(2x) + 2x\sin(2x)}{1 - \cos(2x) + 2x\sin(2x)}limx→01−cos(2x)+2xsin(2x)2sin(2x)−1−cos(2x)+2xsin(2x)limx→04cos(2x)+2sin(2x)+2sin(2x)+4xcos(2x)2sin(2x)+2sin(2x)+4xcos(2x)=limx→04cos(2x)+4sin(2x)+4xcos(2x)4sin(2x)+4xcos(2x)\lim_{x \to 0} \frac{4\cos(2x) + 2\sin(2x) + 2\sin(2x) + 4x\cos(2x)}{2\sin(2x) + 2\sin(2x) + 4x\cos(2x)} = \lim_{x \to 0} \frac{4\cos(2x) + 4\sin(2x) + 4x\cos(2x)}{4\sin(2x) + 4x\cos(2x)}limx→02sin(2x)+2sin(2x)+4xcos(2x)4cos(2x)+2sin(2x)+2sin(2x)+4xcos(2x)=limx→04sin(2x)+4xcos(2x)4cos(2x)+4sin(2x)+4xcos(2x)分子は4に近づき、分母は0に近づきます。元の式を整理すると、tan2x−xxtan2x=tan2xxtan2x−xxtan2x=1x−1tan2x\frac{\tan^2 x - x}{x \tan^2 x} = \frac{\tan^2 x}{x\tan^2 x} - \frac{x}{x \tan^2 x} = \frac{1}{x} - \frac{1}{\tan^2 x}xtan2xtan2x−x=xtan2xtan2x−xtan2xx=x1−tan2x1limx→01x−1x2\lim_{x \to 0} \frac{1}{x} - \frac{1}{x^2}limx→0x1−x21 となる。limx→0x−1x2=−∞\lim_{x \to 0} \frac{x-1}{x^2} = -\inftylimx→0x2x−1=−∞3. 最終的な答え−∞-\infty−∞