定積分 $\int_{-1}^{2} (-6x^2 + 6x) dx$ を計算します。

解析学定積分積分計算
2025/4/4

1. 問題の内容

定積分 12(6x2+6x)dx\int_{-1}^{2} (-6x^2 + 6x) dx を計算します。

2. 解き方の手順

まず、積分を計算します。
(6x2+6x)dx=6x2dx+6xdx\int (-6x^2 + 6x) dx = -6 \int x^2 dx + 6 \int x dx
=6x33+6x22+C=2x3+3x2+C= -6 \cdot \frac{x^3}{3} + 6 \cdot \frac{x^2}{2} + C = -2x^3 + 3x^2 + C
次に、定積分を計算します。
12(6x2+6x)dx=[2x3+3x2]12\int_{-1}^{2} (-6x^2 + 6x) dx = [-2x^3 + 3x^2]_{-1}^{2}
=(2(2)3+3(2)2)(2(1)3+3(1)2)= (-2(2)^3 + 3(2)^2) - (-2(-1)^3 + 3(-1)^2)
=(2(8)+3(4))(2(1)+3(1))= (-2(8) + 3(4)) - (-2(-1) + 3(1))
=(16+12)(2+3)= (-16 + 12) - (2 + 3)
=45=9= -4 - 5 = -9

3. 最終的な答え

-9

「解析学」の関連問題

与えられた積分 $\int ye^{3y-5} dy$ を計算します。

積分部分積分定積分
2025/7/30

以下の3つの数列の極限を求めます。 (1) $a_n = \sqrt{n+1} - \sqrt{n}$ (2) $a_n = (\frac{n}{n+2})^n$ (3) $a_n = (1 - \f...

数列極限有理化e
2025/7/30

与えられた積分 $\int \sqrt{\frac{3}{5x+2}} dx$ を計算する。

積分置換積分ルート
2025/7/30

次の数列 $\{a_n\}$ の極限を求める問題です。 (1) $a_n = \sqrt{n+1} - \sqrt{n}$

数列極限有理化
2025/7/30

与えられた関数のグラフの概形を描き、指定された点における接線の方程式を求める問題です。

微分接線導関数グラフ
2025/7/30

広義積分 $I_n = \int_{0}^{\pi} \frac{\sin(nx)}{\sin x} dx$ (ここで $n=0, 1, 2, 3, \dots$) について、以下の問いに答えます。 ...

積分広義積分三角関数収束性数学的帰納法
2025/7/30

問題2と問題3の導関数を求める問題です。 * 問題2は、$k$ を正の定数として、以下の関数の導関数を求めます。 * (1) $sinh(kx)$ * (2) $cosh(...

導関数微分三角関数双曲線関数合成関数
2025/7/30

広義積分 $I_n = \int_0^{\pi} \frac{\sin(nx)}{\sin x} dx$ (ここで $n = 0, 1, 2, 3, \dots$)について、以下の問いに答える。 1)...

広義積分三角関数定積分収束性積分計算
2025/7/30

$t = \tan\frac{x}{2}$ とおくとき、以下の問いに答えよ。 (1) $\sin x$ および $\cos x$ を $t$ で表せ。 (2) $\frac{dx}{dt}$ を $t...

三角関数不定積分置換積分半角の公式部分分数分解
2025/7/30

与えられた関数を微分します。 (1) $y = e^{3x+4}$ (3) $y = xe^x$ (5) $y = x \log x$

微分合成関数の微分積の微分指数関数対数関数
2025/7/30