関数 $F(x) = \int_{\frac{\pi}{6}}^{x} (2x-t)\cos{t} dt$ を微分せよ。解析学微分積分部分積分定積分関数の微分2025/7/231. 問題の内容関数 F(x)=∫π6x(2x−t)costdtF(x) = \int_{\frac{\pi}{6}}^{x} (2x-t)\cos{t} dtF(x)=∫6πx(2x−t)costdt を微分せよ。2. 解き方の手順まず、F(x)F(x)F(x) を展開して積分を計算します。F(x)=∫π6x(2xcost−tcost)dt=2x∫π6xcostdt−∫π6xtcostdtF(x) = \int_{\frac{\pi}{6}}^{x} (2x\cos{t}-t\cos{t}) dt = 2x\int_{\frac{\pi}{6}}^{x} \cos{t} dt - \int_{\frac{\pi}{6}}^{x} t\cos{t} dtF(x)=∫6πx(2xcost−tcost)dt=2x∫6πxcostdt−∫6πxtcostdtここで、部分積分を用いて∫tcostdt\int t\cos{t} dt∫tcostdtを計算します。u=tu = tu=t, dv=costdtdv = \cos{t} dtdv=costdtとすると、du=dtdu = dtdu=dt, v=sintv = \sin{t}v=sintなので、∫tcostdt=tsint−∫sintdt=tsint+cost+C\int t\cos{t} dt = t\sin{t} - \int \sin{t} dt = t\sin{t} + \cos{t} + C∫tcostdt=tsint−∫sintdt=tsint+cost+Cしたがって、F(x)=2x[sint]π6x−[tsint+cost]π6xF(x) = 2x [\sin{t}]_{\frac{\pi}{6}}^{x} - [t\sin{t} + \cos{t}]_{\frac{\pi}{6}}^{x}F(x)=2x[sint]6πx−[tsint+cost]6πxF(x)=2x(sinx−sinπ6)−(xsinx+cosx−(π6sinπ6+cosπ6))F(x) = 2x(\sin{x} - \sin{\frac{\pi}{6}}) - (x\sin{x} + \cos{x} - (\frac{\pi}{6}\sin{\frac{\pi}{6}} + \cos{\frac{\pi}{6}}))F(x)=2x(sinx−sin6π)−(xsinx+cosx−(6πsin6π+cos6π))F(x)=2x(sinx−12)−(xsinx+cosx−(π6⋅12+32))F(x) = 2x(\sin{x} - \frac{1}{2}) - (x\sin{x} + \cos{x} - (\frac{\pi}{6}\cdot\frac{1}{2} + \frac{\sqrt{3}}{2}))F(x)=2x(sinx−21)−(xsinx+cosx−(6π⋅21+23))F(x)=2xsinx−x−xsinx−cosx+π12+32F(x) = 2x\sin{x} - x - x\sin{x} - \cos{x} + \frac{\pi}{12} + \frac{\sqrt{3}}{2}F(x)=2xsinx−x−xsinx−cosx+12π+23F(x)=xsinx−x−cosx+π12+32F(x) = x\sin{x} - x - \cos{x} + \frac{\pi}{12} + \frac{\sqrt{3}}{2}F(x)=xsinx−x−cosx+12π+23次に、F(x)F(x)F(x)を微分します。F′(x)=ddx(xsinx−x−cosx+π12+32)F'(x) = \frac{d}{dx} (x\sin{x} - x - \cos{x} + \frac{\pi}{12} + \frac{\sqrt{3}}{2})F′(x)=dxd(xsinx−x−cosx+12π+23)F′(x)=sinx+xcosx−1+sinxF'(x) = \sin{x} + x\cos{x} - 1 + \sin{x}F′(x)=sinx+xcosx−1+sinxF′(x)=xcosx+2sinx−1F'(x) = x\cos{x} + 2\sin{x} - 1F′(x)=xcosx+2sinx−13. 最終的な答えF′(x)=xcosx+2sinx−1F'(x) = x\cos{x} + 2\sin{x} - 1F′(x)=xcosx+2sinx−1