与えられた10個の式を展開する問題です。代数学式の展開分配法則展開公式多項式2025/7/231. 問題の内容与えられた10個の式を展開する問題です。2. 解き方の手順各問題について、分配法則、展開公式、または筆算を使って式を展開します。(1) 5x(x+3y)=5x⋅x+5x⋅3y=5x2+15xy5x(x+3y) = 5x \cdot x + 5x \cdot 3y = 5x^2 + 15xy5x(x+3y)=5x⋅x+5x⋅3y=5x2+15xy(2) (a−5b)×(−3a)=a⋅(−3a)−5b⋅(−3a)=−3a2+15ab(a-5b) \times (-3a) = a \cdot (-3a) - 5b \cdot (-3a) = -3a^2 + 15ab(a−5b)×(−3a)=a⋅(−3a)−5b⋅(−3a)=−3a2+15ab(3) (8x3+12x2)÷2x=8x32x+12x22x=4x2+6x(8x^3 + 12x^2) \div 2x = \frac{8x^3}{2x} + \frac{12x^2}{2x} = 4x^2 + 6x(8x3+12x2)÷2x=2x8x3+2x12x2=4x2+6x(4) (x+2)(y+3)=x⋅y+x⋅3+2⋅y+2⋅3=xy+3x+2y+6(x+2)(y+3) = x \cdot y + x \cdot 3 + 2 \cdot y + 2 \cdot 3 = xy + 3x + 2y + 6(x+2)(y+3)=x⋅y+x⋅3+2⋅y+2⋅3=xy+3x+2y+6(5) (x−1)(x+y−3)=x(x+y−3)−1(x+y−3)=x2+xy−3x−x−y+3=x2+xy−4x−y+3(x-1)(x+y-3) = x(x+y-3) - 1(x+y-3) = x^2 + xy - 3x - x - y + 3 = x^2 + xy - 4x - y + 3(x−1)(x+y−3)=x(x+y−3)−1(x+y−3)=x2+xy−3x−x−y+3=x2+xy−4x−y+3(6) (x+3)2=(x+3)(x+3)=x2+2⋅x⋅3+32=x2+6x+9(x+3)^2 = (x+3)(x+3) = x^2 + 2 \cdot x \cdot 3 + 3^2 = x^2 + 6x + 9(x+3)2=(x+3)(x+3)=x2+2⋅x⋅3+32=x2+6x+9(7) (a−7)2=(a−7)(a−7)=a2−2⋅a⋅7+72=a2−14a+49(a-7)^2 = (a-7)(a-7) = a^2 - 2 \cdot a \cdot 7 + 7^2 = a^2 - 14a + 49(a−7)2=(a−7)(a−7)=a2−2⋅a⋅7+72=a2−14a+49(8) (x+4)(x−4)=x2−42=x2−16(x+4)(x-4) = x^2 - 4^2 = x^2 - 16(x+4)(x−4)=x2−42=x2−16(9) (x+3)(x+5)=x2+(3+5)x+3⋅5=x2+8x+15(x+3)(x+5) = x^2 + (3+5)x + 3 \cdot 5 = x^2 + 8x + 15(x+3)(x+5)=x2+(3+5)x+3⋅5=x2+8x+15(10) (x−4)(x+2)=x2+(2−4)x−4⋅2=x2−2x−8(x-4)(x+2) = x^2 + (2-4)x - 4 \cdot 2 = x^2 - 2x - 8(x−4)(x+2)=x2+(2−4)x−4⋅2=x2−2x−83. 最終的な答え(1) 5x2+15xy5x^2 + 15xy5x2+15xy(2) −3a2+15ab-3a^2 + 15ab−3a2+15ab(3) 4x2+6x4x^2 + 6x4x2+6x(4) xy+3x+2y+6xy + 3x + 2y + 6xy+3x+2y+6(5) x2+xy−4x−y+3x^2 + xy - 4x - y + 3x2+xy−4x−y+3(6) x2+6x+9x^2 + 6x + 9x2+6x+9(7) a2−14a+49a^2 - 14a + 49a2−14a+49(8) x2−16x^2 - 16x2−16(9) x2+8x+15x^2 + 8x + 15x2+8x+15(10) x2−2x−8x^2 - 2x - 8x2−2x−8