次の極限値を求めよ。 $\lim_{x \to \infty} \{\log_2(8x^2+2) - 2\log_2(5x+3)\}$解析学極限対数関数の極限2025/7/231. 問題の内容次の極限値を求めよ。limx→∞{log2(8x2+2)−2log2(5x+3)}\lim_{x \to \infty} \{\log_2(8x^2+2) - 2\log_2(5x+3)\}limx→∞{log2(8x2+2)−2log2(5x+3)}2. 解き方の手順まず、対数の性質を用いて式を整理します。2log2(5x+3)=log2((5x+3)2)2\log_2(5x+3) = \log_2((5x+3)^2)2log2(5x+3)=log2((5x+3)2)したがって、log2(8x2+2)−2log2(5x+3)=log2(8x2+2)−log2((5x+3)2)\log_2(8x^2+2) - 2\log_2(5x+3) = \log_2(8x^2+2) - \log_2((5x+3)^2)log2(8x2+2)−2log2(5x+3)=log2(8x2+2)−log2((5x+3)2)対数の差は商の対数に等しいので、log2(8x2+2)−log2((5x+3)2)=log2(8x2+2(5x+3)2)\log_2(8x^2+2) - \log_2((5x+3)^2) = \log_2\left(\frac{8x^2+2}{(5x+3)^2}\right)log2(8x2+2)−log2((5x+3)2)=log2((5x+3)28x2+2)(5x+3)2=25x2+30x+9(5x+3)^2 = 25x^2 + 30x + 9(5x+3)2=25x2+30x+9 であるから、log2(8x2+2(5x+3)2)=log2(8x2+225x2+30x+9)\log_2\left(\frac{8x^2+2}{(5x+3)^2}\right) = \log_2\left(\frac{8x^2+2}{25x^2+30x+9}\right)log2((5x+3)28x2+2)=log2(25x2+30x+98x2+2)x→∞x \to \inftyx→∞ のとき、分数の分子と分母をx2x^2x2で割ると、limx→∞8x2+225x2+30x+9=limx→∞8+2x225+30x+9x2=825\lim_{x \to \infty} \frac{8x^2+2}{25x^2+30x+9} = \lim_{x \to \infty} \frac{8+\frac{2}{x^2}}{25+\frac{30}{x}+\frac{9}{x^2}} = \frac{8}{25}limx→∞25x2+30x+98x2+2=limx→∞25+x30+x298+x22=258したがって、limx→∞log2(8x2+225x2+30x+9)=log2(limx→∞8x2+225x2+30x+9)=log2(825)\lim_{x \to \infty} \log_2\left(\frac{8x^2+2}{25x^2+30x+9}\right) = \log_2\left(\lim_{x \to \infty} \frac{8x^2+2}{25x^2+30x+9}\right) = \log_2\left(\frac{8}{25}\right)limx→∞log2(25x2+30x+98x2+2)=log2(limx→∞25x2+30x+98x2+2)=log2(258)3. 最終的な答えlog2(825)\log_2\left(\frac{8}{25}\right)log2(258)