与えられた組み合わせの問題を解く。 (1) 異なる10冊の本から2冊を選ぶ方法は何通りあるか。 (2) 12人の選手から3人の代表を選ぶ方法は何通りあるか。 (3) 円周上の5個の点のうち、2点を結んで作られる直線は何本あるか。 (4) 平面上の7本の直線が、どの2本の直線も平行でなく、どの3本の直線も1点で交わらないとき、三角形は何個できるか。

離散数学組み合わせ順列二項係数
2025/7/23

1. 問題の内容

与えられた組み合わせの問題を解く。
(1) 異なる10冊の本から2冊を選ぶ方法は何通りあるか。
(2) 12人の選手から3人の代表を選ぶ方法は何通りあるか。
(3) 円周上の5個の点のうち、2点を結んで作られる直線は何本あるか。
(4) 平面上の7本の直線が、どの2本の直線も平行でなく、どの3本の直線も1点で交わらないとき、三角形は何個できるか。

2. 解き方の手順

(1) 10冊から2冊を選ぶ組み合わせなので、10C2_{10}C_2を計算する。
10C2=10!2!(102)!=10!2!8!=10×92×1=45_{10}C_2 = \frac{10!}{2!(10-2)!} = \frac{10!}{2!8!} = \frac{10 \times 9}{2 \times 1} = 45
(2) 12人から3人を選ぶ組み合わせなので、12C3_{12}C_3を計算する。
12C3=12!3!(123)!=12!3!9!=12×11×103×2×1=220_{12}C_3 = \frac{12!}{3!(12-3)!} = \frac{12!}{3!9!} = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} = 220
(3) 5個の点から2個の点を選ぶ組み合わせなので、5C2_{5}C_2を計算する。
5C2=5!2!(52)!=5!2!3!=5×42×1=10_{5}C_2 = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10
(4) 7本の直線から3本を選んで三角形を作る組み合わせなので、7C3_{7}C_3を計算する。
7C3=7!3!(73)!=7!3!4!=7×6×53×2×1=35_{7}C_3 = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35

3. 最終的な答え

(1) 45通り
(2) 220通り
(3) 10本
(4) 35個

「離散数学」の関連問題

与えられた無向グラフ $G(V, E)$ について、以下の問いに答えます。 (1) グラフ $G(V, E)$ を示します。 (2) グラフ $G(V, E)$ の隣接行列 $A$ を求めます。 (3...

グラフ理論隣接行列グラフ歩道
2025/7/24

集合 $A = \{0, 1, 2, 3, 4, 5, 6\}$ 上の二項関係 $R = \{(x, y) | x, y \in A, x - y \text{ は3の倍数}\}$ について、以下の問...

二項関係同値関係同値類集合
2025/7/24

全体集合を $U$ とし、条件 $p, q$ を満たすもの全体の集合を、それぞれ $P, Q$ とする。命題 $\overline{p} \implies q$ が真であるとき、$P, Q$ について...

集合命題論理集合演算
2025/7/24

論理式 $(A \land (A \to B)) \to B$ が恒真命題であることを、(1) 真理値表、(2) 論理演算のみを用いて示す。

論理学真理値表論理演算恒真命題ド・モルガンの法則
2025/7/24

データサイエンス基礎数理の第2回に関する問題です。内容は、進数変換、集合演算、条件の否定、命題の真偽判定です。

進数変換集合演算条件の否定命題の真偽
2025/7/23

以下の4つの問題に答えます。 (1) 6個の数字 1, 1, 2, 2, 2, 2 を1列に並べてできる6桁の整数は全部で何個できるか。 (2) x 5個, y 3個, z 2個のすべての文字を1列に...

順列組み合わせ場合の数重複順列
2025/7/23

10人を以下の条件で組分けする方法が何通りあるか求める問題です。 (1) 3人と7人の2組に分ける。 (2) 5人ずつA, Bの2組に分ける。 (3) 5人ずつの2組に分ける。 (4) 5人、3人、2...

組み合わせ場合の数二項係数組分け
2025/7/23

右の図のような道がある地域で、以下の問いに答える問題です。 (1) AからBまで行く最短の道順は何通りあるか。 (2) AからCを通ってBまで行く最短の道順は何通りあるか。 (3) AからCを通らずに...

組み合わせ最短経路道順場合の数
2025/7/23

"BANANA"という6文字の文字列を使って、可能な文字列の組み合わせの数を求める問題です。

順列組み合わせ文字列場合の数
2025/7/23

右図のような道のある地域において、次の問いに答える。 (1) AからBまで行く最短の道順は何通りあるか。 (2) AからCを通ってBまで行く最短の道順は何通りあるか。 (3) AからCを通らずにBまで...

組み合わせ道順最短経路
2025/7/23