与えられた関数 $f(x) = -6x^3 + 4x - t^2 + 3t$ の不定積分を求める問題です。ただし、$t$ は $x$ に無関係な定数として扱います。

解析学不定積分多項式積分
2025/4/4

1. 問題の内容

与えられた関数 f(x)=6x3+4xt2+3tf(x) = -6x^3 + 4x - t^2 + 3t の不定積分を求める問題です。ただし、ttxx に無関係な定数として扱います。

2. 解き方の手順

不定積分を求めるには、各項ごとに積分を行い、積分定数 CC を最後に加えます。
* xnx^n の積分は xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (ただし n1n \neq -1)
* 定数の積分は adx=ax+C\int a dx = ax + C
与えられた関数を項ごとに積分します。
(6x3+4xt2+3t)dx=6x3dx+4xdxt2dx+3tdx\int (-6x^3 + 4x - t^2 + 3t) dx = \int -6x^3 dx + \int 4x dx - \int t^2 dx + \int 3t dx
=6x3dx+4xdxt21dx+3t1dx= -6 \int x^3 dx + 4 \int x dx - t^2 \int 1 dx + 3t \int 1 dx
=6x44+4x22t2x+3tx+C= -6 \cdot \frac{x^4}{4} + 4 \cdot \frac{x^2}{2} - t^2 \cdot x + 3t \cdot x + C
=32x4+2x2t2x+3tx+C= -\frac{3}{2}x^4 + 2x^2 - t^2x + 3tx + C

3. 最終的な答え

32x4+2x2t2x+3tx+C-\frac{3}{2}x^4 + 2x^2 - t^2x + 3tx + C

「解析学」の関連問題

(1) $0 \le x \le \frac{1}{3}$ のとき、$1+x^2 \le \frac{1}{1-x^2} \le 1+\frac{9}{8}x^2$ が成り立つことを示す。 (2) (...

不等式対数近似
2025/4/11

関数 $y = f(x) = \sqrt{1 - \sin{3x}}$ を微分する。

微分合成関数三角関数
2025/4/11

関数 $y = f(x) = \sqrt{1 - \sin 3x}$ の定義域を求める問題です。

三角関数定義域平方根不等式
2025/4/11

与えられた関数 $y = f(x) = \cos^5(x^2 + 1)$ の導関数 $\frac{dy}{dx}$ を求める問題です。

微分導関数合成関数連鎖律三角関数
2025/4/11

与えられた関数 $y = f(x) = (1 + \log(2x))^3$ の微分を求める問題です。

微分合成関数の微分対数関数
2025/4/11

与えられた関数 $y = f(x) = (x^2 + 2) \cdot 3^x$ の導関数を求める問題です。

導関数積の微分指数関数微分
2025/4/11

関数 $y = f(x) = (1 + \log(2x))^3$ の導関数 $y'$ を求める問題です。

微分導関数合成関数の微分対数関数
2025/4/11

与えられた関数 $y = f(x) = (x^2 + 2) \cdot 3^x$ の導関数を求める問題です。

導関数積の微分指数関数微分
2025/4/11

与えられた関数 $y = f(x) = \log{3x}$ を扱います。特に指示がないので、この関数について何をするかは不明です。一般的な場合として、この関数の性質について考察します。例えば、定義域を...

対数関数定義域不等式
2025/4/11

与えられた関数 $y = f(x) = \sin^3 x$ の導関数 $\frac{dy}{dx}$ を求める問題です。

導関数三角関数合成関数の微分
2025/4/11