関数 $h(x, y) = x^2 + xy + y^2 - ax - by$ の極値を求める。解析学多変数関数極値偏微分ヘッセ行列2025/8/41. 問題の内容関数 h(x,y)=x2+xy+y2−ax−byh(x, y) = x^2 + xy + y^2 - ax - byh(x,y)=x2+xy+y2−ax−by の極値を求める。2. 解き方の手順(1) 偏微分を計算する。hx=∂h∂x=2x+y−ah_x = \frac{\partial h}{\partial x} = 2x + y - ahx=∂x∂h=2x+y−ahy=∂h∂y=x+2y−bh_y = \frac{\partial h}{\partial y} = x + 2y - bhy=∂y∂h=x+2y−b(2) 連立方程式 hx=0h_x = 0hx=0 かつ hy=0h_y = 0hy=0 を解き、停留点を求める。2x+y−a=02x + y - a = 02x+y−a=0x+2y−b=0x + 2y - b = 0x+2y−b=0この連立方程式を解くと、y=2b−a3y = \frac{2b - a}{3}y=32b−ax=2a−b3x = \frac{2a - b}{3}x=32a−b停留点は (2a−b3,2b−a3)(\frac{2a - b}{3}, \frac{2b - a}{3})(32a−b,32b−a)(3) ヘッセ行列式を計算する。hxx=∂2h∂x2=2h_{xx} = \frac{\partial^2 h}{\partial x^2} = 2hxx=∂x2∂2h=2hyy=∂2h∂y2=2h_{yy} = \frac{\partial^2 h}{\partial y^2} = 2hyy=∂y2∂2h=2hxy=∂2h∂x∂y=1h_{xy} = \frac{\partial^2 h}{\partial x \partial y} = 1hxy=∂x∂y∂2h=1ヘッセ行列式 D=hxxhyy−(hxy)2=2⋅2−12=4−1=3D = h_{xx}h_{yy} - (h_{xy})^2 = 2 \cdot 2 - 1^2 = 4 - 1 = 3D=hxxhyy−(hxy)2=2⋅2−12=4−1=3D>0D > 0D>0 かつ hxx>0h_{xx} > 0hxx>0 なので、停留点 (2a−b3,2b−a3)(\frac{2a - b}{3}, \frac{2b - a}{3})(32a−b,32b−a) は極小値を与える。(4) 極小値を計算する。h(2a−b3,2b−a3)=(2a−b3)2+(2a−b3)(2b−a3)+(2b−a3)2−a(2a−b3)−b(2b−a3)h(\frac{2a - b}{3}, \frac{2b - a}{3}) = (\frac{2a - b}{3})^2 + (\frac{2a - b}{3})(\frac{2b - a}{3}) + (\frac{2b - a}{3})^2 - a(\frac{2a - b}{3}) - b(\frac{2b - a}{3})h(32a−b,32b−a)=(32a−b)2+(32a−b)(32b−a)+(32b−a)2−a(32a−b)−b(32b−a)=19(4a2−4ab+b2)+19(4ab−2a2−2b2+ab)+19(4b2−4ab+a2)−13(2a2−ab)−13(2b2−ab)= \frac{1}{9}(4a^2 - 4ab + b^2) + \frac{1}{9}(4ab - 2a^2 - 2b^2 + ab) + \frac{1}{9}(4b^2 - 4ab + a^2) - \frac{1}{3}(2a^2 - ab) - \frac{1}{3}(2b^2 - ab)=91(4a2−4ab+b2)+91(4ab−2a2−2b2+ab)+91(4b2−4ab+a2)−31(2a2−ab)−31(2b2−ab)=19(4a2−4ab+b2+4ab−2a2−2b2+ab+4b2−4ab+a2−6a2+3ab−6b2+3ab)= \frac{1}{9}(4a^2 - 4ab + b^2 + 4ab - 2a^2 - 2b^2 + ab + 4b^2 - 4ab + a^2 - 6a^2 + 3ab - 6b^2 + 3ab)=91(4a2−4ab+b2+4ab−2a2−2b2+ab+4b2−4ab+a2−6a2+3ab−6b2+3ab)=19(−3a2−3b2−0ab)=−13(a2+b2)= \frac{1}{9}(-3a^2 - 3b^2 - 0ab) = -\frac{1}{3}(a^2 + b^2)=91(−3a2−3b2−0ab)=−31(a2+b2)=−a2+b2−2ab3−2ab3= -\frac{a^2 + b^2 -2ab}{3} - \frac{2ab}{3}=−3a2+b2−2ab−32ab=−13(a2+b2+ab)= -\frac{1}{3} (a^2 + b^2 +ab)=−31(a2+b2+ab)h(2a−b3,2b−a3)=19[(4a2+b2−4ab)+(4ab−2a2−2b2+ab)+(a2+4b2−4ab)−3a(2a−b)−3b(2b−a)]h(\frac{2a - b}{3}, \frac{2b - a}{3}) = \frac{1}{9}[ (4a^2+b^2 - 4ab) + (4ab-2a^2-2b^2+ab)+ (a^2+4b^2-4ab) -3a(2a-b) -3b(2b-a)] h(32a−b,32b−a)=91[(4a2+b2−4ab)+(4ab−2a2−2b2+ab)+(a2+4b2−4ab)−3a(2a−b)−3b(2b−a)]=19[5a2+5b2−4ab−6a2+3ab−6b2+3ab]=19(−a2−b2+2ab) = \frac{1}{9}[ 5a^2 + 5b^2 -4ab -6a^2 + 3ab - 6b^2 + 3ab] = \frac{1}{9}(-a^2 -b^2 +2ab) =91[5a2+5b2−4ab−6a2+3ab−6b2+3ab]=91(−a2−b2+2ab)=−a2+b2+0ab3= -\frac{a^2 +b^2 +0ab}{3}=−3a2+b2+0ab=−a2−b23= \frac{-a^2 - b^2}{3}=3−a2−b2h(2a−b3,2b−a3)=−(a2+b2−ab)/3 h(\frac{2a-b}{3},\frac{2b-a}{3}) = - (a^2 + b^2 - ab) /3h(32a−b,32b−a)=−(a2+b2−ab)/3h(2a−b3,2b−a3)=19[4a2−4ab+b2+4ab−2a2−2b2+a2+4b2−4ab−6a2+3ab−6b2+3ab]h(\frac{2a-b}{3},\frac{2b-a}{3}) = \frac{1}{9}[4a^2-4ab+b^2+4ab-2a^2-2b^2+a^2+4b^2-4ab-6a^2+3ab-6b^2+3ab]h(32a−b,32b−a)=91[4a2−4ab+b2+4ab−2a2−2b2+a2+4b2−4ab−6a2+3ab−6b2+3ab]=19[−3a2+0ab−3b2]=\frac{1}{9}[-3a^2+0ab-3b^2] =91[−3a2+0ab−3b2]3. 最終的な答え極値は (2a−b3,2b−a3)(\frac{2a - b}{3}, \frac{2b - a}{3})(32a−b,32b−a) で極小値 −13(a2+b2−ab)-\frac{1}{3}(a^2+b^2-ab)−31(a2+b2−ab)をとる.極値は (2a−b3,2b−a3)(\frac{2a-b}{3},\frac{2b-a}{3})(32a−b,32b−a) であり、その時の値はf=−1/3∗(a2+b2−ab)f = -1/3*(a^2 + b^2-ab)f=−1/3∗(a2+b2−ab)