与えられた角度(30°, 45°, 60°, 90°, 120°)に対して、それぞれの正弦(sin)の値を求め、解答群(ア〜オ)の中から対応するものを順番に選び出す問題です。

幾何学三角関数正弦sin角度
2025/7/23

1. 問題の内容

与えられた角度(30°, 45°, 60°, 90°, 120°)に対して、それぞれの正弦(sin)の値を求め、解答群(ア〜オ)の中から対応するものを順番に選び出す問題です。

2. 解き方の手順

各角度に対する正弦の値を計算し、対応する記号を特定します。
* (1) 30°: sin30=12\sin 30^{\circ} = \frac{1}{2}。解答群の「イ」に対応します。
* (2) 45°: sin45=22\sin 45^{\circ} = \frac{\sqrt{2}}{2}。解答群の「ウ」に対応します。
* (3) 60°: sin60=32\sin 60^{\circ} = \frac{\sqrt{3}}{2}。解答群の「エ」に対応します。
* (4) 90°: sin90=1\sin 90^{\circ} = 1。解答群の「オ」に対応します。
* (5) 120°: sin120=sin(18060)=sin60=32\sin 120^{\circ} = \sin (180^{\circ} - 60^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}。解答群の「エ」に対応します。
したがって、順番はイ、ウ、エ、オ、エ となります。

3. 最終的な答え

2. イウエオエ

「幾何学」の関連問題

問題は、AB=AC=13, BC=10である三角形ABCの内部に、図のように接する円C1, C2, C3,... を順に作る。円Cnの中心をOn、面積をSnとする。 (1) 円C1の半径r1を求めよ。...

三角形内接円等比数列面積三平方の定理相似
2025/7/23

ベクトル $\vec{a} = (-4, 3)$ に垂直な単位ベクトルを求める問題です。

ベクトル単位ベクトル垂直内積
2025/7/23

一辺の長さが1の正方形の折り紙ABCDがある。辺AB, DC上にそれぞれ点E, Fをとり、線分EFを折り目として、頂点Bが辺AD上の点Gに重なるように折る。このとき、頂点Cが移る点をHとし、辺DCと線...

幾何正方形折り紙ピタゴラスの定理相似
2025/7/23

## 1. 問題の内容

三角形面積三角関数
2025/7/23

三角形ABCにおいて、辺ACの長さが4、辺ABの対角である角Aの角度が30°、辺ABの長さが7であるとき、辺BCの長さを求めよ。

三角形余弦定理辺の長さ角度
2025/7/23

$\theta$ が鈍角で、$\cos \theta = -\frac{1}{3}$ のとき、$\cos \theta$ と $\tan \theta$ の値を求めなさい。

三角関数三角比鈍角sincostan
2025/7/23

$\theta$ が鈍角で、$\cos\theta = -\frac{1}{3}$ のとき、$\sin\theta$ と $\tan\theta$ の値を求めなさい。

三角比三角関数鈍角sincostan
2025/7/23

$\theta$ が鋭角で、$\sin \theta = \frac{\sqrt{7}}{4}$ のとき、$\cos \theta$ と $\tan \theta$ の値を求めよ。

三角比三角関数鋭角sincostan三角関数の相互関係
2025/7/23

与えられた三角関数の値を、指定された別の三角関数と鋭角を用いて表現する問題です。具体的には、以下の3つの問題を解きます。 (1) $\sin 130^\circ$ を鋭角のコサインで表す。 (2) $...

三角関数三角比角度変換sincostan
2025/7/23

与えられた三角比($\sin 110^\circ$, $\cos 144^\circ$, $\tan 178^\circ$)を、鋭角の三角比で表す問題です。

三角比三角関数角度変換
2025/7/23