Aタワーから60m離れた場所からAタワーを見上げたとき、見上げる角度が59°だった。三角比を用いて、Aタワーの高さを求めよ。ただし、小数点第1位を四捨五入すること。

幾何学三角比tan高さ角度
2025/7/23

1. 問題の内容

Aタワーから60m離れた場所からAタワーを見上げたとき、見上げる角度が59°だった。三角比を用いて、Aタワーの高さを求めよ。ただし、小数点第1位を四捨五入すること。

2. 解き方の手順

Aタワーの高さをhh (m) とすると、tan59\tan{59^\circ} は次のように表せる。
tan59=h60\tan{59^\circ} = \frac{h}{60}
したがって、hh は次のように計算できる。
h=60×tan59h = 60 \times \tan{59^\circ}
tan59\tan{59^\circ} の値は問題文に与えられていないので、近似値を用いる。ここではtan591.664\tan{59^\circ} \approx 1.664を使う。
h60×1.664=99.84h \approx 60 \times 1.664 = 99.84
小数点第1位を四捨五入すると、h100h \approx 100 (m) となる。

3. 最終的な答え

100 m

「幾何学」の関連問題

## 1. 問題の内容

三角形面積三角関数
2025/7/23

三角形ABCにおいて、辺ACの長さが4、辺ABの対角である角Aの角度が30°、辺ABの長さが7であるとき、辺BCの長さを求めよ。

三角形余弦定理辺の長さ角度
2025/7/23

$\theta$ が鈍角で、$\cos \theta = -\frac{1}{3}$ のとき、$\cos \theta$ と $\tan \theta$ の値を求めなさい。

三角関数三角比鈍角sincostan
2025/7/23

$\theta$ が鈍角で、$\cos\theta = -\frac{1}{3}$ のとき、$\sin\theta$ と $\tan\theta$ の値を求めなさい。

三角比三角関数鈍角sincostan
2025/7/23

$\theta$ が鋭角で、$\sin \theta = \frac{\sqrt{7}}{4}$ のとき、$\cos \theta$ と $\tan \theta$ の値を求めよ。

三角比三角関数鋭角sincostan三角関数の相互関係
2025/7/23

与えられた三角関数の値を、指定された別の三角関数と鋭角を用いて表現する問題です。具体的には、以下の3つの問題を解きます。 (1) $\sin 130^\circ$ を鋭角のコサインで表す。 (2) $...

三角関数三角比角度変換sincostan
2025/7/23

与えられた三角比($\sin 110^\circ$, $\cos 144^\circ$, $\tan 178^\circ$)を、鋭角の三角比で表す問題です。

三角比三角関数角度変換
2025/7/23

図を参考にして、$\sin A$, $\cos A$, $\tan A$ の値を求める問題です。点Pの座標は$(-1, 1)$です。

三角比三角関数座標平面
2025/7/23

図を参考にして、$\sin A$, $\cos A$, $\tan A$ の値を求めなさい。図には点P(-4, 3)が与えられており、原点Oと点Pを結ぶ線分の長さは5です。角度Aはx軸の正の方向と線分...

三角比座標平面三角関数サインコサインタンジェント
2025/7/23

傾きが25°のケーブルカーの線路で、A駅とB駅の距離が800mである。 (1) A駅とB駅の高低差を求める。 (2) A駅とB駅の水平距離を求める。 ただし、答えは小数点第1位を四捨五入する。

三角比直角三角形距離角度sincos
2025/7/23