定積分 $\int_{0}^{\frac{\pi}{4}} (\sin{\frac{x}{2}} + \cos{3x}) dx$ を計算します。解析学積分定積分三角関数2025/7/241. 問題の内容定積分 ∫0π4(sinx2+cos3x)dx\int_{0}^{\frac{\pi}{4}} (\sin{\frac{x}{2}} + \cos{3x}) dx∫04π(sin2x+cos3x)dx を計算します。2. 解き方の手順まず、積分を分解します。∫0π4(sinx2+cos3x)dx=∫0π4sinx2dx+∫0π4cos3xdx\int_{0}^{\frac{\pi}{4}} (\sin{\frac{x}{2}} + \cos{3x}) dx = \int_{0}^{\frac{\pi}{4}} \sin{\frac{x}{2}} dx + \int_{0}^{\frac{\pi}{4}} \cos{3x} dx∫04π(sin2x+cos3x)dx=∫04πsin2xdx+∫04πcos3xdxそれぞれの積分を計算します。∫sinx2dx=−2cosx2+C\int \sin{\frac{x}{2}} dx = -2\cos{\frac{x}{2}} + C∫sin2xdx=−2cos2x+C∫cos3xdx=13sin3x+C\int \cos{3x} dx = \frac{1}{3}\sin{3x} + C∫cos3xdx=31sin3x+Cしたがって、∫0π4sinx2dx=[−2cosx2]0π4=−2cosπ8−(−2cos0)=−2cosπ8+2\int_{0}^{\frac{\pi}{4}} \sin{\frac{x}{2}} dx = [-2\cos{\frac{x}{2}}]_{0}^{\frac{\pi}{4}} = -2\cos{\frac{\pi}{8}} - (-2\cos{0}) = -2\cos{\frac{\pi}{8}} + 2∫04πsin2xdx=[−2cos2x]04π=−2cos8π−(−2cos0)=−2cos8π+2∫0π4cos3xdx=[13sin3x]0π4=13sin3π4−13sin0=13sin3π4=13⋅22=26\int_{0}^{\frac{\pi}{4}} \cos{3x} dx = [\frac{1}{3}\sin{3x}]_{0}^{\frac{\pi}{4}} = \frac{1}{3}\sin{\frac{3\pi}{4}} - \frac{1}{3}\sin{0} = \frac{1}{3}\sin{\frac{3\pi}{4}} = \frac{1}{3} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{6}∫04πcos3xdx=[31sin3x]04π=31sin43π−31sin0=31sin43π=31⋅22=62合計すると、∫0π4(sinx2+cos3x)dx=−2cosπ8+2+26\int_{0}^{\frac{\pi}{4}} (\sin{\frac{x}{2}} + \cos{3x}) dx = -2\cos{\frac{\pi}{8}} + 2 + \frac{\sqrt{2}}{6}∫04π(sin2x+cos3x)dx=−2cos8π+2+62cosπ8=2+22\cos{\frac{\pi}{8}} = \frac{\sqrt{2+\sqrt{2}}}{2}cos8π=22+2なので、∫0π4(sinx2+cos3x)dx=−22+22+2+26=−2+2+2+26\int_{0}^{\frac{\pi}{4}} (\sin{\frac{x}{2}} + \cos{3x}) dx = -2\frac{\sqrt{2+\sqrt{2}}}{2} + 2 + \frac{\sqrt{2}}{6} = -\sqrt{2+\sqrt{2}} + 2 + \frac{\sqrt{2}}{6}∫04π(sin2x+cos3x)dx=−222+2+2+62=−2+2+2+623. 最終的な答え2−2+2+262 - \sqrt{2+\sqrt{2}} + \frac{\sqrt{2}}{6}2−2+2+62