関数 $y = x^2 e^{-x}$ の第4次導関数を求める問題です。解析学微分導関数指数関数積の微分合成関数の微分2025/7/241. 問題の内容関数 y=x2e−xy = x^2 e^{-x}y=x2e−x の第4次導関数を求める問題です。2. 解き方の手順まず、yyy の導関数を順に求めていきます。積の微分 (uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′ と、合成関数の微分 (ef(x))′=f′(x)ef(x)(e^{f(x)})' = f'(x)e^{f(x)}(ef(x))′=f′(x)ef(x) を利用します。1階微分:y′=(x2)′e−x+x2(e−x)′=2xe−x+x2(−1)e−x=2xe−x−x2e−x=(2x−x2)e−xy' = (x^2)'e^{-x} + x^2(e^{-x})' = 2xe^{-x} + x^2(-1)e^{-x} = 2xe^{-x} - x^2e^{-x} = (2x-x^2)e^{-x}y′=(x2)′e−x+x2(e−x)′=2xe−x+x2(−1)e−x=2xe−x−x2e−x=(2x−x2)e−x2階微分:y′′=(2x−x2)′e−x+(2x−x2)(e−x)′=(2−2x)e−x+(2x−x2)(−1)e−x=(2−2x−2x+x2)e−x=(x2−4x+2)e−xy'' = (2x-x^2)'e^{-x} + (2x-x^2)(e^{-x})' = (2-2x)e^{-x} + (2x-x^2)(-1)e^{-x} = (2-2x-2x+x^2)e^{-x} = (x^2-4x+2)e^{-x}y′′=(2x−x2)′e−x+(2x−x2)(e−x)′=(2−2x)e−x+(2x−x2)(−1)e−x=(2−2x−2x+x2)e−x=(x2−4x+2)e−x3階微分:y′′′=(x2−4x+2)′e−x+(x2−4x+2)(e−x)′=(2x−4)e−x+(x2−4x+2)(−1)e−x=(2x−4−x2+4x−2)e−x=(−x2+6x−6)e−xy''' = (x^2-4x+2)'e^{-x} + (x^2-4x+2)(e^{-x})' = (2x-4)e^{-x} + (x^2-4x+2)(-1)e^{-x} = (2x-4-x^2+4x-2)e^{-x} = (-x^2+6x-6)e^{-x}y′′′=(x2−4x+2)′e−x+(x2−4x+2)(e−x)′=(2x−4)e−x+(x2−4x+2)(−1)e−x=(2x−4−x2+4x−2)e−x=(−x2+6x−6)e−x4階微分:y(4)=(−x2+6x−6)′e−x+(−x2+6x−6)(e−x)′=(−2x+6)e−x+(−x2+6x−6)(−1)e−x=(−2x+6+x2−6x+6)e−x=(x2−8x+12)e−xy^{(4)} = (-x^2+6x-6)'e^{-x} + (-x^2+6x-6)(e^{-x})' = (-2x+6)e^{-x} + (-x^2+6x-6)(-1)e^{-x} = (-2x+6+x^2-6x+6)e^{-x} = (x^2-8x+12)e^{-x}y(4)=(−x2+6x−6)′e−x+(−x2+6x−6)(e−x)′=(−2x+6)e−x+(−x2+6x−6)(−1)e−x=(−2x+6+x2−6x+6)e−x=(x2−8x+12)e−x3. 最終的な答えy(4)=(x2−8x+12)e−xy^{(4)} = (x^2 - 8x + 12)e^{-x}y(4)=(x2−8x+12)e−x