次の極限を求める問題です。 $\lim_{x \to \frac{\pi}{3}} \frac{\tan x - \sqrt{3}}{\sin(x - \frac{\pi}{3})}$解析学極限三角関数加法定理2025/7/241. 問題の内容次の極限を求める問題です。limx→π3tanx−3sin(x−π3)\lim_{x \to \frac{\pi}{3}} \frac{\tan x - \sqrt{3}}{\sin(x - \frac{\pi}{3})}limx→3πsin(x−3π)tanx−32. 解き方の手順x−π3=tx - \frac{\pi}{3} = tx−3π=tとおくと、x→π3x \to \frac{\pi}{3}x→3πのとき、t→0t \to 0t→0となる。x=t+π3x = t + \frac{\pi}{3}x=t+3πより、limx→π3tanx−3sin(x−π3)=limt→0tan(t+π3)−3sint\lim_{x \to \frac{\pi}{3}} \frac{\tan x - \sqrt{3}}{\sin(x - \frac{\pi}{3})} = \lim_{t \to 0} \frac{\tan(t + \frac{\pi}{3}) - \sqrt{3}}{\sin t}limx→3πsin(x−3π)tanx−3=limt→0sinttan(t+3π)−3三角関数の加法定理より、tan(t+π3)=tant+tanπ31−tanttanπ3=tant+31−3tant\tan(t + \frac{\pi}{3}) = \frac{\tan t + \tan \frac{\pi}{3}}{1 - \tan t \tan \frac{\pi}{3}} = \frac{\tan t + \sqrt{3}}{1 - \sqrt{3} \tan t}tan(t+3π)=1−tanttan3πtant+tan3π=1−3tanttant+3したがって、limt→0tan(t+π3)−3sint=limt→0tant+31−3tant−3sint=limt→0tant+3−3(1−3tant)(1−3tant)sint\lim_{t \to 0} \frac{\tan(t + \frac{\pi}{3}) - \sqrt{3}}{\sin t} = \lim_{t \to 0} \frac{\frac{\tan t + \sqrt{3}}{1 - \sqrt{3} \tan t} - \sqrt{3}}{\sin t} = \lim_{t \to 0} \frac{\tan t + \sqrt{3} - \sqrt{3}(1 - \sqrt{3} \tan t)}{(1 - \sqrt{3} \tan t)\sin t}limt→0sinttan(t+3π)−3=limt→0sint1−3tanttant+3−3=limt→0(1−3tant)sinttant+3−3(1−3tant)=limt→0tant+3−3+3tant(1−3tant)sint=limt→04tant(1−3tant)sint=limt→04(1−3tant)⋅tantsint= \lim_{t \to 0} \frac{\tan t + \sqrt{3} - \sqrt{3} + 3\tan t}{(1 - \sqrt{3} \tan t)\sin t} = \lim_{t \to 0} \frac{4\tan t}{(1 - \sqrt{3} \tan t)\sin t} = \lim_{t \to 0} \frac{4}{(1 - \sqrt{3} \tan t)}\cdot \frac{\tan t}{\sin t}=limt→0(1−3tant)sinttant+3−3+3tant=limt→0(1−3tant)sint4tant=limt→0(1−3tant)4⋅sinttant=limt→041−3tant⋅1cost=41−0⋅11=4= \lim_{t \to 0} \frac{4}{1 - \sqrt{3} \tan t} \cdot \frac{1}{\cos t} = \frac{4}{1 - 0} \cdot \frac{1}{1} = 4=limt→01−3tant4⋅cost1=1−04⋅11=43. 最終的な答え4