$n$ が自然数のとき、$(\frac{1+i}{\sqrt{2}})^n - (\frac{1-i}{\sqrt{2}})^n$ の値を求める。代数学複素数ド・モアブルの定理三角関数極形式2025/4/41. 問題の内容nnn が自然数のとき、(1+i2)n−(1−i2)n(\frac{1+i}{\sqrt{2}})^n - (\frac{1-i}{\sqrt{2}})^n(21+i)n−(21−i)n の値を求める。2. 解き方の手順まず、1+i1+i1+i と 1−i1-i1−i を極形式で表す。1+i=2(cos(π4)+isin(π4))1+i = \sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))1+i=2(cos(4π)+isin(4π))1−i=2(cos(−π4)+isin(−π4))1-i = \sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))1−i=2(cos(−4π)+isin(−4π))したがって、1+i2=cos(π4)+isin(π4)\frac{1+i}{\sqrt{2}} = \cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})21+i=cos(4π)+isin(4π)1−i2=cos(−π4)+isin(−π4)\frac{1-i}{\sqrt{2}} = \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})21−i=cos(−4π)+isin(−4π)ド・モアブルの定理より、(1+i2)n=(cos(π4)+isin(π4))n=cos(nπ4)+isin(nπ4)(\frac{1+i}{\sqrt{2}})^n = (\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))^n = \cos(\frac{n\pi}{4}) + i\sin(\frac{n\pi}{4})(21+i)n=(cos(4π)+isin(4π))n=cos(4nπ)+isin(4nπ)(1−i2)n=(cos(−π4)+isin(−π4))n=cos(−nπ4)+isin(−nπ4)=cos(nπ4)−isin(nπ4)(\frac{1-i}{\sqrt{2}})^n = (\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))^n = \cos(-\frac{n\pi}{4}) + i\sin(-\frac{n\pi}{4}) = \cos(\frac{n\pi}{4}) - i\sin(\frac{n\pi}{4})(21−i)n=(cos(−4π)+isin(−4π))n=cos(−4nπ)+isin(−4nπ)=cos(4nπ)−isin(4nπ)(1+i2)n−(1−i2)n=(cos(nπ4)+isin(nπ4))−(cos(nπ4)−isin(nπ4))(\frac{1+i}{\sqrt{2}})^n - (\frac{1-i}{\sqrt{2}})^n = (\cos(\frac{n\pi}{4}) + i\sin(\frac{n\pi}{4})) - (\cos(\frac{n\pi}{4}) - i\sin(\frac{n\pi}{4}))(21+i)n−(21−i)n=(cos(4nπ)+isin(4nπ))−(cos(4nπ)−isin(4nπ))=2isin(nπ4)= 2i\sin(\frac{n\pi}{4})=2isin(4nπ)3. 最終的な答え2isin(nπ4)2i\sin(\frac{n\pi}{4})2isin(4nπ)