次の和 $S$ を求めます。 $S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \dots + (2n-1) \cdot 3^{n-1}$代数学級数数列等比数列和2025/7/241. 問題の内容次の和 SSS を求めます。S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \dots + (2n-1) \cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−12. 解き方の手順まず、SSSを書き出します。S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + \dots + (2n-1) \cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1次に、3S3S3Sを書き出します。3S=1⋅3+3⋅32+5⋅33+⋯+(2n−3)⋅3n−1+(2n−1)⋅3n3S = 1 \cdot 3 + 3 \cdot 3^2 + 5 \cdot 3^3 + \dots + (2n-3) \cdot 3^{n-1} + (2n-1) \cdot 3^n3S=1⋅3+3⋅32+5⋅33+⋯+(2n−3)⋅3n−1+(2n−1)⋅3nS−3SS - 3SS−3Sを計算します。−2S=1⋅1+(3−1)⋅3+(5−3)⋅32+⋯+(2n−1−(2n−3))⋅3n−1−(2n−1)⋅3n-2S = 1 \cdot 1 + (3-1) \cdot 3 + (5-3) \cdot 3^2 + \dots + (2n-1 - (2n-3)) \cdot 3^{n-1} - (2n-1) \cdot 3^n−2S=1⋅1+(3−1)⋅3+(5−3)⋅32+⋯+(2n−1−(2n−3))⋅3n−1−(2n−1)⋅3n−2S=1+2⋅3+2⋅32+⋯+2⋅3n−1−(2n−1)⋅3n-2S = 1 + 2 \cdot 3 + 2 \cdot 3^2 + \dots + 2 \cdot 3^{n-1} - (2n-1) \cdot 3^n−2S=1+2⋅3+2⋅32+⋯+2⋅3n−1−(2n−1)⋅3n−2S=1+2(3+32+⋯+3n−1)−(2n−1)⋅3n-2S = 1 + 2(3 + 3^2 + \dots + 3^{n-1}) - (2n-1) \cdot 3^n−2S=1+2(3+32+⋯+3n−1)−(2n−1)⋅3n3+32+⋯+3n−13 + 3^2 + \dots + 3^{n-1}3+32+⋯+3n−1は等比数列の和なので、3+32+⋯+3n−1=3(3n−1−1)3−1=32(3n−1−1)3 + 3^2 + \dots + 3^{n-1} = \frac{3(3^{n-1} - 1)}{3-1} = \frac{3}{2}(3^{n-1} - 1)3+32+⋯+3n−1=3−13(3n−1−1)=23(3n−1−1)これを代入すると、−2S=1+2⋅32(3n−1−1)−(2n−1)⋅3n-2S = 1 + 2 \cdot \frac{3}{2}(3^{n-1} - 1) - (2n-1) \cdot 3^n−2S=1+2⋅23(3n−1−1)−(2n−1)⋅3n−2S=1+3(3n−1−1)−(2n−1)⋅3n-2S = 1 + 3(3^{n-1} - 1) - (2n-1) \cdot 3^n−2S=1+3(3n−1−1)−(2n−1)⋅3n−2S=1+3n−3−(2n−1)⋅3n-2S = 1 + 3^n - 3 - (2n-1) \cdot 3^n−2S=1+3n−3−(2n−1)⋅3n−2S=3n−2−(2n−1)⋅3n-2S = 3^n - 2 - (2n-1) \cdot 3^n−2S=3n−2−(2n−1)⋅3n−2S=3n−2−2n⋅3n+3n-2S = 3^n - 2 - 2n \cdot 3^n + 3^n−2S=3n−2−2n⋅3n+3n−2S=2⋅3n−2n⋅3n−2-2S = 2 \cdot 3^n - 2n \cdot 3^n - 2−2S=2⋅3n−2n⋅3n−2−2S=(2−2n)3n−2-2S = (2 - 2n)3^n - 2−2S=(2−2n)3n−2S=(n−1)3n+1S = (n-1)3^n + 1S=(n−1)3n+13. 最終的な答えS=(n−1)3n+1S = (n-1)3^n + 1S=(n−1)3n+1