$A = x^2 - 2xy + 5z$ および $B = -3x^2 - xy - z$ のとき、以下の式を計算します。 (1) $A + B$ (2) $A - B$ (3) $2A - B$ (4) $(3A + B) - 2(A - 2B)$代数学多項式式の計算変数2025/3/111. 問題の内容A=x2−2xy+5zA = x^2 - 2xy + 5zA=x2−2xy+5z および B=−3x2−xy−zB = -3x^2 - xy - zB=−3x2−xy−z のとき、以下の式を計算します。(1) A+BA + BA+B(2) A−BA - BA−B(3) 2A−B2A - B2A−B(4) (3A+B)−2(A−2B)(3A + B) - 2(A - 2B)(3A+B)−2(A−2B)2. 解き方の手順(1) A+BA + BA+BA+B=(x2−2xy+5z)+(−3x2−xy−z)A + B = (x^2 - 2xy + 5z) + (-3x^2 - xy - z)A+B=(x2−2xy+5z)+(−3x2−xy−z)A+B=x2−2xy+5z−3x2−xy−zA + B = x^2 - 2xy + 5z - 3x^2 - xy - zA+B=x2−2xy+5z−3x2−xy−zA+B=(x2−3x2)+(−2xy−xy)+(5z−z)A + B = (x^2 - 3x^2) + (-2xy - xy) + (5z - z)A+B=(x2−3x2)+(−2xy−xy)+(5z−z)A+B=−2x2−3xy+4zA + B = -2x^2 - 3xy + 4zA+B=−2x2−3xy+4z(2) A−BA - BA−BA−B=(x2−2xy+5z)−(−3x2−xy−z)A - B = (x^2 - 2xy + 5z) - (-3x^2 - xy - z)A−B=(x2−2xy+5z)−(−3x2−xy−z)A−B=x2−2xy+5z+3x2+xy+zA - B = x^2 - 2xy + 5z + 3x^2 + xy + zA−B=x2−2xy+5z+3x2+xy+zA−B=(x2+3x2)+(−2xy+xy)+(5z+z)A - B = (x^2 + 3x^2) + (-2xy + xy) + (5z + z)A−B=(x2+3x2)+(−2xy+xy)+(5z+z)A−B=4x2−xy+6zA - B = 4x^2 - xy + 6zA−B=4x2−xy+6z(3) 2A−B2A - B2A−B2A−B=2(x2−2xy+5z)−(−3x2−xy−z)2A - B = 2(x^2 - 2xy + 5z) - (-3x^2 - xy - z)2A−B=2(x2−2xy+5z)−(−3x2−xy−z)2A−B=2x2−4xy+10z+3x2+xy+z2A - B = 2x^2 - 4xy + 10z + 3x^2 + xy + z2A−B=2x2−4xy+10z+3x2+xy+z2A−B=(2x2+3x2)+(−4xy+xy)+(10z+z)2A - B = (2x^2 + 3x^2) + (-4xy + xy) + (10z + z)2A−B=(2x2+3x2)+(−4xy+xy)+(10z+z)2A−B=5x2−3xy+11z2A - B = 5x^2 - 3xy + 11z2A−B=5x2−3xy+11z(4) (3A+B)−2(A−2B)(3A + B) - 2(A - 2B)(3A+B)−2(A−2B)(3A+B)−2(A−2B)=3A+B−2A+4B(3A + B) - 2(A - 2B) = 3A + B - 2A + 4B(3A+B)−2(A−2B)=3A+B−2A+4B(3A+B)−2(A−2B)=(3A−2A)+(B+4B)(3A + B) - 2(A - 2B) = (3A - 2A) + (B + 4B)(3A+B)−2(A−2B)=(3A−2A)+(B+4B)(3A+B)−2(A−2B)=A+5B(3A + B) - 2(A - 2B) = A + 5B(3A+B)−2(A−2B)=A+5BA+5B=(x2−2xy+5z)+5(−3x2−xy−z)A + 5B = (x^2 - 2xy + 5z) + 5(-3x^2 - xy - z)A+5B=(x2−2xy+5z)+5(−3x2−xy−z)A+5B=x2−2xy+5z−15x2−5xy−5zA + 5B = x^2 - 2xy + 5z - 15x^2 - 5xy - 5zA+5B=x2−2xy+5z−15x2−5xy−5zA+5B=(x2−15x2)+(−2xy−5xy)+(5z−5z)A + 5B = (x^2 - 15x^2) + (-2xy - 5xy) + (5z - 5z)A+5B=(x2−15x2)+(−2xy−5xy)+(5z−5z)A+5B=−14x2−7xy+0zA + 5B = -14x^2 - 7xy + 0zA+5B=−14x2−7xy+0zA+5B=−14x2−7xyA + 5B = -14x^2 - 7xyA+5B=−14x2−7xy3. 最終的な答え(1) A+B=−2x2−3xy+4zA + B = -2x^2 - 3xy + 4zA+B=−2x2−3xy+4z(2) A−B=4x2−xy+6zA - B = 4x^2 - xy + 6zA−B=4x2−xy+6z(3) 2A−B=5x2−3xy+11z2A - B = 5x^2 - 3xy + 11z2A−B=5x2−3xy+11z(4) (3A+B)−2(A−2B)=−14x2−7xy(3A + B) - 2(A - 2B) = -14x^2 - 7xy(3A+B)−2(A−2B)=−14x2−7xy