$\lim_{x\to\infty} (\sqrt{x^2+2x+3} - \sqrt{x^2-2x+1})$ を求めます。解析学極限有理化ルート2025/7/241. 問題の内容limx→∞(x2+2x+3−x2−2x+1)\lim_{x\to\infty} (\sqrt{x^2+2x+3} - \sqrt{x^2-2x+1})limx→∞(x2+2x+3−x2−2x+1) を求めます。2. 解き方の手順まず、与えられた式を有理化します。x2+2x+3−x2−2x+1=(x2+2x+3−x2−2x+1)×x2+2x+3+x2−2x+1x2+2x+3+x2−2x+1\sqrt{x^2+2x+3} - \sqrt{x^2-2x+1} = (\sqrt{x^2+2x+3} - \sqrt{x^2-2x+1}) \times \frac{\sqrt{x^2+2x+3} + \sqrt{x^2-2x+1}}{\sqrt{x^2+2x+3} + \sqrt{x^2-2x+1}}x2+2x+3−x2−2x+1=(x2+2x+3−x2−2x+1)×x2+2x+3+x2−2x+1x2+2x+3+x2−2x+1=(x2+2x+3)−(x2−2x+1)x2+2x+3+x2−2x+1= \frac{(x^2+2x+3) - (x^2-2x+1)}{\sqrt{x^2+2x+3} + \sqrt{x^2-2x+1}}=x2+2x+3+x2−2x+1(x2+2x+3)−(x2−2x+1)=4x+2x2+2x+3+x2−2x+1= \frac{4x+2}{\sqrt{x^2+2x+3} + \sqrt{x^2-2x+1}}=x2+2x+3+x2−2x+14x+2次に、分子と分母をxxxで割ります。=4xx+2xx2+2x+3x+x2−2x+1x= \frac{\frac{4x}{x}+\frac{2}{x}}{\frac{\sqrt{x^2+2x+3}}{x} + \frac{\sqrt{x^2-2x+1}}{x}}=xx2+2x+3+xx2−2x+1x4x+x2=4+2xx2+2x+3x2+x2−2x+1x2= \frac{4+\frac{2}{x}}{\sqrt{\frac{x^2+2x+3}{x^2}} + \sqrt{\frac{x^2-2x+1}{x^2}}}=x2x2+2x+3+x2x2−2x+14+x2=4+2x1+2x+3x2+1−2x+1x2= \frac{4+\frac{2}{x}}{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}} + \sqrt{1-\frac{2}{x}+\frac{1}{x^2}}}=1+x2+x23+1−x2+x214+x2x→∞x \to \inftyx→∞のとき、2x→0\frac{2}{x} \to 0x2→0、3x2→0\frac{3}{x^2} \to 0x23→0、1x2→0\frac{1}{x^2} \to 0x21→0なので、limx→∞4+2x1+2x+3x2+1−2x+1x2=41+1=41+1=42=2\lim_{x\to\infty} \frac{4+\frac{2}{x}}{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}} + \sqrt{1-\frac{2}{x}+\frac{1}{x^2}}} = \frac{4}{\sqrt{1} + \sqrt{1}} = \frac{4}{1+1} = \frac{4}{2} = 2limx→∞1+x2+x23+1−x2+x214+x2=1+14=1+14=24=23. 最終的な答え2