与えられた10個の関数を $x$ で微分しなさい。解析学微分導関数三角関数指数関数対数関数多項式2025/7/241. 問題の内容与えられた10個の関数を xxx で微分しなさい。2. 解き方の手順(1) 3x33x^33x3 の微分:d/dx(3x3)=3⋅3x3−1=9x2d/dx(3x^3) = 3 \cdot 3x^{3-1} = 9x^2d/dx(3x3)=3⋅3x3−1=9x2(2) x3+2x2+4x^3 + 2x^2 + 4x3+2x2+4 の微分:d/dx(x3+2x2+4)=3x3−1+2⋅2x2−1+0=3x2+4xd/dx(x^3 + 2x^2 + 4) = 3x^{3-1} + 2 \cdot 2x^{2-1} + 0 = 3x^2 + 4xd/dx(x3+2x2+4)=3x3−1+2⋅2x2−1+0=3x2+4x(3) x3+x63\frac{x^3 + x^6}{3}3x3+x6 の微分:d/dx(x3+x63)=13d/dx(x3+x6)=13(3x3−1+6x6−1)=13(3x2+6x5)=x2+2x5d/dx(\frac{x^3 + x^6}{3}) = \frac{1}{3} d/dx(x^3 + x^6) = \frac{1}{3}(3x^{3-1} + 6x^{6-1}) = \frac{1}{3}(3x^2 + 6x^5) = x^2 + 2x^5d/dx(3x3+x6)=31d/dx(x3+x6)=31(3x3−1+6x6−1)=31(3x2+6x5)=x2+2x5(4) x\sqrt{x}x の微分:x=x1/2\sqrt{x} = x^{1/2}x=x1/2 なので、d/dx(x1/2)=12x1/2−1=12x−1/2=12xd/dx(x^{1/2}) = \frac{1}{2}x^{1/2 - 1} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}d/dx(x1/2)=21x1/2−1=21x−1/2=2x1(5) 1x\frac{1}{\sqrt{x}}x1 の微分:1x=x−1/2\frac{1}{\sqrt{x}} = x^{-1/2}x1=x−1/2 なので、d/dx(x−1/2)=−12x−1/2−1=−12x−3/2=−12xxd/dx(x^{-1/2}) = -\frac{1}{2}x^{-1/2 - 1} = -\frac{1}{2}x^{-3/2} = -\frac{1}{2x\sqrt{x}}d/dx(x−1/2)=−21x−1/2−1=−21x−3/2=−2xx1(6) sinx+cosx\sin x + \cos xsinx+cosx の微分:d/dx(sinx+cosx)=cosx−sinxd/dx(\sin x + \cos x) = \cos x - \sin xd/dx(sinx+cosx)=cosx−sinx(7) ex2\frac{e^x}{2}2ex の微分:d/dx(ex2)=12d/dx(ex)=ex2d/dx(\frac{e^x}{2}) = \frac{1}{2} d/dx(e^x) = \frac{e^x}{2}d/dx(2ex)=21d/dx(ex)=2ex(8) 12logex\frac{1}{2} \log_e x21logex の微分:d/dx(12logex)=12⋅1x=12xd/dx(\frac{1}{2} \log_e x) = \frac{1}{2} \cdot \frac{1}{x} = \frac{1}{2x}d/dx(21logex)=21⋅x1=2x1(9) (x+2)(x2−3x+1)(x+2)(x^2-3x+1)(x+2)(x2−3x+1) の微分:まず展開する:(x+2)(x2−3x+1)=x3−3x2+x+2x2−6x+2=x3−x2−5x+2(x+2)(x^2-3x+1) = x^3 - 3x^2 + x + 2x^2 - 6x + 2 = x^3 - x^2 - 5x + 2(x+2)(x2−3x+1)=x3−3x2+x+2x2−6x+2=x3−x2−5x+2微分する:d/dx(x3−x2−5x+2)=3x2−2x−5d/dx(x^3 - x^2 - 5x + 2) = 3x^2 - 2x - 5d/dx(x3−x2−5x+2)=3x2−2x−5(10) cos(3x+π)\cos(3x+\pi)cos(3x+π) の微分:d/dx(cos(3x+π))=−sin(3x+π)⋅d/dx(3x+π)=−sin(3x+π)⋅3=−3sin(3x+π)d/dx(\cos(3x+\pi)) = -\sin(3x+\pi) \cdot d/dx(3x+\pi) = -\sin(3x+\pi) \cdot 3 = -3\sin(3x+\pi)d/dx(cos(3x+π))=−sin(3x+π)⋅d/dx(3x+π)=−sin(3x+π)⋅3=−3sin(3x+π)3. 最終的な答え(1) 9x29x^29x2(2) 3x2+4x3x^2 + 4x3x2+4x(3) x2+2x5x^2 + 2x^5x2+2x5(4) 12x\frac{1}{2\sqrt{x}}2x1(5) −12xx-\frac{1}{2x\sqrt{x}}−2xx1(6) cosx−sinx\cos x - \sin xcosx−sinx(7) ex2\frac{e^x}{2}2ex(8) 12x\frac{1}{2x}2x1(9) 3x2−2x−53x^2 - 2x - 53x2−2x−5(10) −3sin(3x+π)-3\sin(3x+\pi)−3sin(3x+π)