問題17は、6つの一元一次方程式を解く問題です。問題18は、ソフトクリームとジュースの代金の合計から、ソフトクリーム1個の値段を求める問題です。

代数学一次方程式方程式の解法文章問題連立方程式
2025/4/4

1. 問題の内容

問題17は、6つの一元一次方程式を解く問題です。問題18は、ソフトクリームとジュースの代金の合計から、ソフトクリーム1個の値段を求める問題です。

2. 解き方の手順

**問題17**
(1) x+8=3x + 8 = 3
両辺から8を引きます。
x=38x = 3 - 8
x=5x = -5
(2) 3x=9-3x = -9
両辺を-3で割ります。
x=93x = \frac{-9}{-3}
x=3x = 3
(3) 13x=7\frac{1}{3}x = 7
両辺に3をかけます。
x=7×3x = 7 \times 3
x=21x = 21
(4) 5x+18=23x5x + 18 = 2 - 3x
両辺に3x3xを加えます。
5x+3x+18=25x + 3x + 18 = 2
8x+18=28x + 18 = 2
両辺から18を引きます。
8x=2188x = 2 - 18
8x=168x = -16
両辺を8で割ります。
x=168x = \frac{-16}{8}
x=2x = -2
(5) 2x1=7(x3)2x - 1 = 7(x - 3)
右辺を展開します。
2x1=7x212x - 1 = 7x - 21
両辺から2x2xを引きます。
1=5x21-1 = 5x - 21
両辺に21を加えます。
20=5x20 = 5x
両辺を5で割ります。
x=205x = \frac{20}{5}
x=4x = 4
(6) 32x+1=x54\frac{3}{2}x + 1 = x - \frac{5}{4}
両辺に4をかけます。
4×(32x+1)=4×(x54)4 \times (\frac{3}{2}x + 1) = 4 \times (x - \frac{5}{4})
6x+4=4x56x + 4 = 4x - 5
両辺から4x4xを引きます。
2x+4=52x + 4 = -5
両辺から4を引きます。
2x=92x = -9
両辺を2で割ります。
x=92x = -\frac{9}{2}
**問題18**
ソフトクリーム1個の値段をxx円とします。
ジュース5杯の代金は120×5=600120 \times 5 = 600円です。
ソフトクリーム3個とジュース5杯の合計金額は3x+600=11403x + 600 = 1140円となります。
3x=11406003x = 1140 - 600
3x=5403x = 540
x=5403x = \frac{540}{3}
x=180x = 180

3. 最終的な答え

**問題17**
(1) x=5x = -5
(2) x=3x = 3
(3) x=21x = 21
(4) x=2x = -2
(5) x=4x = 4
(6) x=92x = -\frac{9}{2}
**問題18**
ソフトクリーム1個の値段は180円です。

「代数学」の関連問題

2点 $(-3, 4)$ と $(3, 0)$ を通る直線の式を $y = ax + b$ の形で求めよ。

一次関数直線の式座標
2025/4/13

与えられた2次関数 $f(x) = ax^2 - 2ax + a^2 - 20$ について、以下の問いに答えます。 (1) $a = -1$ のとき、$y = f(x)$ のグラフの頂点の座標を求めま...

二次関数最大値最小値グラフ2次不等式
2025/4/13

問題5:$y$ は $x$ に比例し、$x = 3$ のとき $y = -6$ である。$y$ を $x$ の式で表す。 問題6:$y$ は $x$ に反比例し、$x = -4$ のとき $y = -...

比例反比例一次関数
2025/4/13

(1) $(2x^2 + 3)^6$ の展開式における $x^6$ の項の係数を求める。 (2) $(a + b - 2c)^7$ の展開式における $a^2b^3c^2$ の項の係数を求める。

二項定理多項定理展開式係数
2025/4/13

複素数の分数を有理化する問題です。具体的には、以下の2つの複素数の分数を計算し、選択肢の中から正しい答えを選びます。 (1) $\frac{4+7i}{1-2i}$ (2) $\frac{5-6i}{...

複素数有理化複素数の計算
2025/4/13

関数 $y = ax^2$ のグラフが点 $(-4, 8)$ を通るとき、以下の3つの問いに答えます。 (1) $a$ の値を求めます。 (2) $x$ の値が $2$ から $6$ まで増加するとき...

二次関数グラフ変化の割合変域
2025/4/13

不等式 $|a+b| \le |a| + |b|$ が成り立つことを示し、等号が成り立つ条件を求める問題です。 $\left( |a| + |b| \right)^2 - (a+b)^2 = 2(\b...

不等式絶対値証明
2025/4/13

* $x = -3$ のとき、$y = (-3)^2 = 9$ * $x = 8$ のとき、$y = (8)^2 = 64$

二次関数変域変化の割合
2025/4/13

関数 $y = ax^2$ のグラフが点 $(-4, 8)$ を通るとき、$a$ の値を求める問題です。

二次関数グラフ代入
2025/4/13

グラフが2点 $(-2, 9)$ と $(6, -3)$ を通る直線の方程式を求めよ。

一次関数直線の方程式連立方程式
2025/4/13