半径 $r$ m の円形の池の周りに幅 $2$ m の道を作った。道の真ん中を通る線の長さを $l$ m、道の面積を $S$ m$^2$ とするとき、$S=2l$ となることを証明する。

幾何学面積証明
2025/7/25

1. 問題の内容

半径 rr m の円形の池の周りに幅 22 m の道を作った。道の真ん中を通る線の長さを ll m、道の面積を SS m2^2 とするとき、S=2lS=2l となることを証明する。

2. 解き方の手順

道の外側の円の半径は r+2r+2 m である。
道の面積 SS は、外側の円の面積から内側の円(池)の面積を引いたものなので、
S = \pi (r+2)^2 - \pi r^2
S = \pi (r^2 + 4r + 4) - \pi r^2
S = \pi r^2 + 4\pi r + 4\pi - \pi r^2
S = 4\pi r + 4\pi
次に、道の真ん中を通る線の長さを ll とする。道の真ん中の円の半径は r+1r+1 m であるから、
l = 2\pi (r+1)
l = 2\pi r + 2\pi
両辺に 22 をかけると
2l = 4\pi r + 4\pi
したがって、
S = 4\pi r + 4\pi = 2l
よって、S=2lS = 2l が証明された。

3. 最終的な答え

S=2lS=2l

「幾何学」の関連問題

4点 A(-1, 3), B(2, 1), C(11, b), D(a, 1) があり、四角形 ABCD が平行四辺形であるとき、a, b の値を求め、さらに、辺 AB, 辺 AD の長さ、対角線 A...

ベクトル平行四辺形距離座標平面
2025/7/26

原点Oから伸びる3つのベクトル$\overrightarrow{OA}$, $\overrightarrow{OB}$, $\overrightarrow{OC}$があり、それぞれの長さは$|\ove...

ベクトル内積三角形の面積
2025/7/26

座標平面上の原点Oと異なる2点A, Bを考える。線分ABを$p:1-p$ ($0<p<1$)に内分する点をCとする。ベクトル$\overrightarrow{OA}=\overrightarrow{a...

ベクトル内分点内積座標平面
2025/7/26

三角形ABCの内部にある点Pについて、以下の式が成り立っている。 $4\overrightarrow{PA} + 5\overrightarrow{PB} + 6\overrightarrow{PC}...

ベクトル三角形面積比メネラウスの定理
2025/7/26

三角形ABCがあり、$∠ABC < 90°$です。点A, B, Cを通る円Oがあります。$∠ABC$の二等分線と線分AC, 円Oとの交点をそれぞれD, Eとします。線分AEを引きます。点Eを通り線分C...

相似三角形円周角角の二等分線
2025/7/26

図において、BG//CD である。線分BGと線分ACとの交点をIとする。このとき、$\triangle ABC \sim \triangle BIC$ であることを証明する。

相似三角形平行線証明
2025/7/26

図1のように、正三角形ABCと平行四辺形EBCDがあり、点Eは辺ABの中点である。辺ACとEDの交点をFとする。図2は、図1において、平行四辺形EBCDの対角線の交点をOとし、直線AOと辺ED, BC...

幾何正三角形平行四辺形相似証明
2025/7/26

鋭角三角形$ABC$の辺$BC$上に点$P$がある。$\triangle ABP$の外接円の半径を$R_1$、$\triangle ACP$の外接円の半径を$R_2$とする。$\angle BPA =...

正弦定理外接円三角形三角関数
2025/7/26

図のように立方体があり、線分BG上に点Pをとって四面体BDHPを作った。BP:PG=2:1のとき、四面体BDHPの体積を求めよ。ただし、立方体の1辺の長さを1とする。

立体図形立方体四面体体積空間図形
2025/7/26

立方体において、線分BG上に点Pがあり、BP:PG = 2:1 であるとき、四面体BDHPの体積を求めよ。ただし、立方体の1辺の長さを具体的に指定されていないので、それを$a$として計算し、最終的な体...

空間図形体積立方体四面体
2025/7/26