曲線 $y = \frac{1}{2}x^2$ の $0 \le x \le 2$ の範囲における長さを求めよ。解析学曲線の長さ積分置換積分双曲線関数2025/7/251. 問題の内容曲線 y=12x2y = \frac{1}{2}x^2y=21x2 の 0≤x≤20 \le x \le 20≤x≤2 の範囲における長さを求めよ。2. 解き方の手順曲線の長さの公式は次の通りです。L=∫ab1+(dydx)2dxL = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} dxL=∫ab1+(dxdy)2dxここで、a=0a = 0a=0、b=2b = 2b=2 であり、y=12x2y = \frac{1}{2}x^2y=21x2 です。まず、dydx\frac{dy}{dx}dxdy を求めます。dydx=ddx(12x2)=x\frac{dy}{dx} = \frac{d}{dx} (\frac{1}{2}x^2) = xdxdy=dxd(21x2)=x次に、(dydx)2(\frac{dy}{dx})^2(dxdy)2 を求めます。(dydx)2=x2(\frac{dy}{dx})^2 = x^2(dxdy)2=x2したがって、1+(dydx)2=1+x21 + (\frac{dy}{dx})^2 = 1 + x^21+(dxdy)2=1+x2曲線の長さ LLL は次の積分で与えられます。L=∫021+x2dxL = \int_{0}^{2} \sqrt{1 + x^2} dxL=∫021+x2dxこの積分を解くために、次の置換を行います。x=sinh(u)x = \sinh(u)x=sinh(u)dx=cosh(u)dudx = \cosh(u) dudx=cosh(u)dux=0x = 0x=0 のとき、sinh(u)=0\sinh(u) = 0sinh(u)=0 なので、u=0u = 0u=0x=2x = 2x=2 のとき、sinh(u)=2\sinh(u) = 2sinh(u)=2 なので、u=sinh−1(2)u = \sinh^{-1}(2)u=sinh−1(2)1+x2=1+sinh2(u)=cosh2(u)=cosh(u)\sqrt{1 + x^2} = \sqrt{1 + \sinh^2(u)} = \sqrt{\cosh^2(u)} = \cosh(u)1+x2=1+sinh2(u)=cosh2(u)=cosh(u)したがって、L=∫0sinh−1(2)cosh(u)⋅cosh(u)du=∫0sinh−1(2)cosh2(u)duL = \int_{0}^{\sinh^{-1}(2)} \cosh(u) \cdot \cosh(u) du = \int_{0}^{\sinh^{-1}(2)} \cosh^2(u) duL=∫0sinh−1(2)cosh(u)⋅cosh(u)du=∫0sinh−1(2)cosh2(u)ducosh2(u)=1+cosh(2u)2\cosh^2(u) = \frac{1 + \cosh(2u)}{2}cosh2(u)=21+cosh(2u) なので、L=∫0sinh−1(2)1+cosh(2u)2du=12∫0sinh−1(2)(1+cosh(2u))duL = \int_{0}^{\sinh^{-1}(2)} \frac{1 + \cosh(2u)}{2} du = \frac{1}{2} \int_{0}^{\sinh^{-1}(2)} (1 + \cosh(2u)) duL=∫0sinh−1(2)21+cosh(2u)du=21∫0sinh−1(2)(1+cosh(2u))duL=12[u+12sinh(2u)]0sinh−1(2)L = \frac{1}{2} [u + \frac{1}{2}\sinh(2u)]_{0}^{\sinh^{-1}(2)}L=21[u+21sinh(2u)]0sinh−1(2)sinh(2u)=2sinh(u)cosh(u)\sinh(2u) = 2\sinh(u)\cosh(u)sinh(2u)=2sinh(u)cosh(u) なので、L=12[u+sinh(u)cosh(u)]0sinh−1(2)L = \frac{1}{2} [u + \sinh(u)\cosh(u)]_{0}^{\sinh^{-1}(2)}L=21[u+sinh(u)cosh(u)]0sinh−1(2)u=sinh−1(2)u = \sinh^{-1}(2)u=sinh−1(2) のとき、sinh(u)=2\sinh(u) = 2sinh(u)=2 であり、cosh(u)=1+sinh2(u)=1+22=5\cosh(u) = \sqrt{1 + \sinh^2(u)} = \sqrt{1 + 2^2} = \sqrt{5}cosh(u)=1+sinh2(u)=1+22=5L=12[sinh−1(2)+25−(0+0)]=12sinh−1(2)+5L = \frac{1}{2} [\sinh^{-1}(2) + 2\sqrt{5} - (0 + 0)] = \frac{1}{2} \sinh^{-1}(2) + \sqrt{5}L=21[sinh−1(2)+25−(0+0)]=21sinh−1(2)+5sinh−1(x)=ln(x+x2+1)\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})sinh−1(x)=ln(x+x2+1) なので、sinh−1(2)=ln(2+22+1)=ln(2+5)\sinh^{-1}(2) = \ln(2 + \sqrt{2^2 + 1}) = \ln(2 + \sqrt{5})sinh−1(2)=ln(2+22+1)=ln(2+5)したがって、L=12ln(2+5)+5L = \frac{1}{2} \ln(2 + \sqrt{5}) + \sqrt{5}L=21ln(2+5)+53. 最終的な答え12ln(2+5)+5\frac{1}{2} \ln(2 + \sqrt{5}) + \sqrt{5}21ln(2+5)+5