以下の積分を計算します。 (1) $\int \frac{dx}{x(x+1)^2}$ (3) $\int_0^{\frac{\sqrt{3}}{2}} \frac{dx}{\sqrt{1-x^2}}$ (4) $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dx}{\sin x}$ (5) $\int_0^{1} \frac{dx}{x^3+1}$

解析学積分部分分数分解置換積分定積分
2025/7/25
わかりました。画像に示された積分問題を解きます。

1. 問題の内容

以下の積分を計算します。
(1) dxx(x+1)2\int \frac{dx}{x(x+1)^2}
(3) 032dx1x2\int_0^{\frac{\sqrt{3}}{2}} \frac{dx}{\sqrt{1-x^2}}
(4) π3π2dxsinx\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dx}{\sin x}
(5) 01dxx3+1\int_0^{1} \frac{dx}{x^3+1}

2. 解き方の手順

(1) dxx(x+1)2\int \frac{dx}{x(x+1)^2}
部分分数分解を行います。
1x(x+1)2=Ax+Bx+1+C(x+1)2\frac{1}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}
1=A(x+1)2+Bx(x+1)+Cx1 = A(x+1)^2 + Bx(x+1) + Cx
x=0x = 0のとき、1=A1 = A
x=1x = -1のとき、1=C1 = -C より C=1C = -1
1=(x+1)2+Bx(x+1)x=x2+2x+1+Bx2+Bxx=(1+B)x2+(1+B)x+11 = (x+1)^2 + Bx(x+1) - x = x^2+2x+1 + Bx^2+Bx - x = (1+B)x^2 + (1+B)x + 1
1+B=01+B = 0 より B=1B = -1
よって、
dxx(x+1)2=(1x1x+11(x+1)2)dx=lnxlnx+1+1x+1+C=lnxx+1+1x+1+C\int \frac{dx}{x(x+1)^2} = \int (\frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}) dx = \ln|x| - \ln|x+1| + \frac{1}{x+1} + C = \ln|\frac{x}{x+1}| + \frac{1}{x+1} + C
(3) 032dx1x2\int_0^{\frac{\sqrt{3}}{2}} \frac{dx}{\sqrt{1-x^2}}
dx1x2=arcsin(x)+C\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C なので、
032dx1x2=[arcsin(x)]032=arcsin(32)arcsin(0)=π30=π3\int_0^{\frac{\sqrt{3}}{2}} \frac{dx}{\sqrt{1-x^2}} = [\arcsin(x)]_0^{\frac{\sqrt{3}}{2}} = \arcsin(\frac{\sqrt{3}}{2}) - \arcsin(0) = \frac{\pi}{3} - 0 = \frac{\pi}{3}
(4) π3π2dxsinx\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dx}{\sin x}
1sinxdx=cscxdx=lncscx+cotx+C\int \frac{1}{\sin x} dx = \int \csc x dx = -\ln|\csc x + \cot x| + C
π3π2dxsinx=[lncscx+cotx]π3π2=lncscπ2+cotπ2+lncscπ3+cotπ3\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dx}{\sin x} = [-\ln|\csc x + \cot x|]_{\frac{\pi}{3}}^{\frac{\pi}{2}} = -\ln|\csc \frac{\pi}{2} + \cot \frac{\pi}{2}| + \ln|\csc \frac{\pi}{3} + \cot \frac{\pi}{3}|
=ln1+0+ln23+13=ln33=ln3=12ln3= -\ln|1 + 0| + \ln|\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}| = \ln|\frac{3}{\sqrt{3}}| = \ln|\sqrt{3}| = \frac{1}{2} \ln 3
(5) 01dxx3+1\int_0^{1} \frac{dx}{x^3+1}
x3+1=(x+1)(x2x+1)x^3 + 1 = (x+1)(x^2-x+1)
1x3+1=Ax+1+Bx+Cx2x+1\frac{1}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}
1=A(x2x+1)+(Bx+C)(x+1)=(A+B)x2+(A+B+C)x+(A+C)1 = A(x^2-x+1) + (Bx+C)(x+1) = (A+B)x^2 + (-A+B+C)x + (A+C)
A+B=0A+B = 0, A+B+C=0-A+B+C = 0, A+C=1A+C = 1
B=AB = -A, C=1AC = 1-A
AA+1A=0-A - A + 1 - A = 0 より 3A=1-3A = -1, A=13A = \frac{1}{3}
B=13B = -\frac{1}{3}, C=23C = \frac{2}{3}
dxx3+1=(13x+1+13x+23x2x+1)dx=131x+1dx+13x+2x2x+1dx\int \frac{dx}{x^3+1} = \int (\frac{\frac{1}{3}}{x+1} + \frac{-\frac{1}{3}x + \frac{2}{3}}{x^2-x+1}) dx = \frac{1}{3} \int \frac{1}{x+1} dx + \frac{1}{3} \int \frac{-x+2}{x^2-x+1} dx
=13lnx+1+1312(2x1)+32x2x+1dx=13lnx+116lnx2x+1+121x2x+1dx= \frac{1}{3} \ln |x+1| + \frac{1}{3} \int \frac{-\frac{1}{2}(2x-1) + \frac{3}{2}}{x^2-x+1} dx = \frac{1}{3} \ln |x+1| - \frac{1}{6} \ln |x^2-x+1| + \frac{1}{2} \int \frac{1}{x^2-x+1} dx
x2x+1=(x12)2+34x^2-x+1 = (x-\frac{1}{2})^2 + \frac{3}{4}
1x2x+1dx=1(x12)2+34dx=23arctan(2x13)\int \frac{1}{x^2-x+1} dx = \int \frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}} dx = \frac{2}{\sqrt{3}} \arctan(\frac{2x-1}{\sqrt{3}})
01dxx3+1=[13lnx+116lnx2x+1+13arctan(2x13)]01=13ln216ln1+13arctan(13)(13ln116ln1+13arctan(13))=13ln2+13π613(π6)=13ln2+π33\int_0^1 \frac{dx}{x^3+1} = [\frac{1}{3} \ln |x+1| - \frac{1}{6} \ln |x^2-x+1| + \frac{1}{\sqrt{3}} \arctan(\frac{2x-1}{\sqrt{3}})]_0^1 = \frac{1}{3} \ln 2 - \frac{1}{6} \ln 1 + \frac{1}{\sqrt{3}} \arctan(\frac{1}{\sqrt{3}}) - (\frac{1}{3} \ln 1 - \frac{1}{6} \ln 1 + \frac{1}{\sqrt{3}} \arctan(\frac{-1}{\sqrt{3}})) = \frac{1}{3} \ln 2 + \frac{1}{\sqrt{3}} \frac{\pi}{6} - \frac{1}{\sqrt{3}} (-\frac{\pi}{6}) = \frac{1}{3} \ln 2 + \frac{\pi}{3\sqrt{3}}

3. 最終的な答え

(1) lnxx+1+1x+1+C\ln|\frac{x}{x+1}| + \frac{1}{x+1} + C
(3) π3\frac{\pi}{3}
(4) 12ln3\frac{1}{2} \ln 3
(5) 13ln2+π33\frac{1}{3} \ln 2 + \frac{\pi}{3\sqrt{3}}

「解析学」の関連問題