導関数の定義に従って、関数 $f(x) = (2x - 1)^3$ を微分せよ。解析学微分導関数極限関数の微分2025/7/251. 問題の内容導関数の定義に従って、関数 f(x)=(2x−1)3f(x) = (2x - 1)^3f(x)=(2x−1)3 を微分せよ。2. 解き方の手順導関数の定義は次の通りです。f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)まず、f(x+h)f(x + h)f(x+h) を計算します。f(x+h)=(2(x+h)−1)3=(2x+2h−1)3f(x + h) = (2(x + h) - 1)^3 = (2x + 2h - 1)^3f(x+h)=(2(x+h)−1)3=(2x+2h−1)3次に、f(x+h)−f(x)f(x + h) - f(x)f(x+h)−f(x) を計算します。f(x+h)−f(x)=(2x+2h−1)3−(2x−1)3f(x + h) - f(x) = (2x + 2h - 1)^3 - (2x - 1)^3f(x+h)−f(x)=(2x+2h−1)3−(2x−1)3ここで、A=2x+2h−1A = 2x + 2h - 1A=2x+2h−1 および B=2x−1B = 2x - 1B=2x−1 と置くと、A3−B3=(A−B)(A2+AB+B2)A^3 - B^3 = (A - B)(A^2 + AB + B^2)A3−B3=(A−B)(A2+AB+B2) となります。A−B=(2x+2h−1)−(2x−1)=2hA - B = (2x + 2h - 1) - (2x - 1) = 2hA−B=(2x+2h−1)−(2x−1)=2hA2=(2x+2h−1)2=4x2+4h2+1+8xh−4x−4hA^2 = (2x + 2h - 1)^2 = 4x^2 + 4h^2 + 1 + 8xh - 4x - 4hA2=(2x+2h−1)2=4x2+4h2+1+8xh−4x−4hAB=(2x+2h−1)(2x−1)=4x2+4xh−2x−2x−2h+1=4x2+4xh−4x−2h+1AB = (2x + 2h - 1)(2x - 1) = 4x^2 + 4xh - 2x - 2x - 2h + 1 = 4x^2 + 4xh - 4x - 2h + 1AB=(2x+2h−1)(2x−1)=4x2+4xh−2x−2x−2h+1=4x2+4xh−4x−2h+1B2=(2x−1)2=4x2−4x+1B^2 = (2x - 1)^2 = 4x^2 - 4x + 1B2=(2x−1)2=4x2−4x+1A2+AB+B2=(4x2+4h2+1+8xh−4x−4h)+(4x2+4xh−4x−2h+1)+(4x2−4x+1)=12x2+4h2+12xh−12x−6h+3A^2 + AB + B^2 = (4x^2 + 4h^2 + 1 + 8xh - 4x - 4h) + (4x^2 + 4xh - 4x - 2h + 1) + (4x^2 - 4x + 1) = 12x^2 + 4h^2 + 12xh - 12x - 6h + 3A2+AB+B2=(4x2+4h2+1+8xh−4x−4h)+(4x2+4xh−4x−2h+1)+(4x2−4x+1)=12x2+4h2+12xh−12x−6h+3したがって、f(x+h)−f(x)=(2h)(12x2+4h2+12xh−12x−6h+3)f(x + h) - f(x) = (2h)(12x^2 + 4h^2 + 12xh - 12x - 6h + 3)f(x+h)−f(x)=(2h)(12x2+4h2+12xh−12x−6h+3)f(x+h)−f(x)h=(2h)(12x2+4h2+12xh−12x−6h+3)h=2(12x2+4h2+12xh−12x−6h+3)\frac{f(x + h) - f(x)}{h} = \frac{(2h)(12x^2 + 4h^2 + 12xh - 12x - 6h + 3)}{h} = 2(12x^2 + 4h^2 + 12xh - 12x - 6h + 3)hf(x+h)−f(x)=h(2h)(12x2+4h2+12xh−12x−6h+3)=2(12x2+4h2+12xh−12x−6h+3)ここで、h→0h \to 0h→0 の極限を取ります。limh→02(12x2+4h2+12xh−12x−6h+3)=2(12x2−12x+3)=24x2−24x+6\lim_{h \to 0} 2(12x^2 + 4h^2 + 12xh - 12x - 6h + 3) = 2(12x^2 - 12x + 3) = 24x^2 - 24x + 6limh→02(12x2+4h2+12xh−12x−6h+3)=2(12x2−12x+3)=24x2−24x+6したがって、f′(x)=24x2−24x+6=6(4x2−4x+1)=6(2x−1)2f'(x) = 24x^2 - 24x + 6 = 6(4x^2 - 4x + 1) = 6(2x - 1)^2f′(x)=24x2−24x+6=6(4x2−4x+1)=6(2x−1)23. 最終的な答えf′(x)=6(2x−1)2f'(x) = 6(2x - 1)^2f′(x)=6(2x−1)2