関数 $f(x) = \frac{(\sqrt{x}-1)^2}{x}$ の導関数を求めよ。解析学導関数微分関数の微分2025/7/251. 問題の内容関数 f(x)=(x−1)2xf(x) = \frac{(\sqrt{x}-1)^2}{x}f(x)=x(x−1)2 の導関数を求めよ。2. 解き方の手順まず、f(x)f(x)f(x) を簡単にする。f(x)=(x−1)2x=x−2x+1x=1−2xx+1x=1−2x+1x=1−2x−12+x−1f(x) = \frac{(\sqrt{x}-1)^2}{x} = \frac{x - 2\sqrt{x} + 1}{x} = 1 - \frac{2\sqrt{x}}{x} + \frac{1}{x} = 1 - \frac{2}{\sqrt{x}} + \frac{1}{x} = 1 - 2x^{-\frac{1}{2}} + x^{-1}f(x)=x(x−1)2=xx−2x+1=1−x2x+x1=1−x2+x1=1−2x−21+x−1次に、f(x)f(x)f(x) を微分する。f′(x)=ddx(1−2x−12+x−1)f'(x) = \frac{d}{dx}(1 - 2x^{-\frac{1}{2}} + x^{-1})f′(x)=dxd(1−2x−21+x−1)f′(x)=0−2(−12)x−32+(−1)x−2f'(x) = 0 - 2(-\frac{1}{2})x^{-\frac{3}{2}} + (-1)x^{-2}f′(x)=0−2(−21)x−23+(−1)x−2f′(x)=x−32−x−2f'(x) = x^{-\frac{3}{2}} - x^{-2}f′(x)=x−23−x−2f′(x)=1xx−1x2=1xx−1x2f'(x) = \frac{1}{x\sqrt{x}} - \frac{1}{x^2} = \frac{1}{x\sqrt{x}} - \frac{1}{x^2}f′(x)=xx1−x21=xx1−x21通分すると、f′(x)=xx2x−xx2x=x−xx2x=x(x−1)(x+1)x2x=x(x−1)(x+1)x2x=x−1x2xx+1xxxf'(x) = \frac{x}{x^2\sqrt{x}} - \frac{\sqrt{x}}{x^2\sqrt{x}} = \frac{x - \sqrt{x}}{x^2\sqrt{x}} = \frac{\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+1)}{x^2 \sqrt{x}} = \frac{ \sqrt{x} (\sqrt{x}-1)(\sqrt{x}+1)}{x^2 \sqrt{x}} = \frac{\sqrt{x}-1}{x^2} \sqrt{x} \frac{\sqrt{x}+1}{\sqrt{x}} \frac{\sqrt{x}}{\sqrt{x}}f′(x)=x2xx−x2xx=x2xx−x=x2xx(x−1)(x+1)=x2xx(x−1)(x+1)=x2x−1xxx+1xxf′(x)=x(x−1)(x+1)x5/2=x−xx2xf'(x) = \frac{\sqrt{x} (\sqrt{x} - 1) ( \sqrt{x} + 1)}{x^{5/2}} = \frac{x - \sqrt{x}}{x^2 \sqrt{x}}f′(x)=x5/2x(x−1)(x+1)=x2xx−xf′(x)=x(x−1)x2xf'(x) = \frac{\sqrt{x}(\sqrt{x} - 1)}{x^2 \sqrt{x}}f′(x)=x2xx(x−1)f′(x)=x−1x2f'(x) = \frac{\sqrt{x}-1}{x^2}f′(x)=x2x−13. 最終的な答えf′(x)=1xx−1x2=x−1x2f'(x) = \frac{1}{x\sqrt{x}} - \frac{1}{x^2} = \frac{\sqrt{x}-1}{x^2}f′(x)=xx1−x21=x2x−1