定積分 $\int_{0}^{4} |(x-4)(x-1)^3| dx$ を計算します。解析学定積分絶対値積分2025/7/251. 問題の内容定積分 ∫04∣(x−4)(x−1)3∣dx\int_{0}^{4} |(x-4)(x-1)^3| dx∫04∣(x−4)(x−1)3∣dx を計算します。2. 解き方の手順まず、積分区間 [0,4][0, 4][0,4] において、被積分関数 (x−4)(x−1)3(x-4)(x-1)^3(x−4)(x−1)3 の符号を調べます。x=1x=1x=1 と x=4x=4x=4 が関数 (x−4)(x−1)3(x-4)(x-1)^3(x−4)(x−1)3 が0となる点です。- 0≤x<10 \le x < 10≤x<1 のとき: (x−4)<0(x-4)<0(x−4)<0 かつ (x−1)3<0(x-1)^3 < 0(x−1)3<0 なので、 (x−4)(x−1)3>0(x-4)(x-1)^3 > 0(x−4)(x−1)3>0- 1<x<41 < x < 41<x<4 のとき: (x−4)<0(x-4)<0(x−4)<0 かつ (x−1)3>0(x-1)^3 > 0(x−1)3>0 なので、 (x−4)(x−1)3<0(x-4)(x-1)^3 < 0(x−4)(x−1)3<0- x=1,4x = 1, 4x=1,4 のとき: (x−4)(x−1)3=0(x-4)(x-1)^3 = 0(x−4)(x−1)3=0したがって、積分を区間 [0,1][0, 1][0,1] と [1,4][1, 4][1,4] に分割し、絶対値を外します。∫04∣(x−4)(x−1)3∣dx=∫01(x−4)(x−1)3dx−∫14(x−4)(x−1)3dx\int_{0}^{4} |(x-4)(x-1)^3| dx = \int_{0}^{1} (x-4)(x-1)^3 dx - \int_{1}^{4} (x-4)(x-1)^3 dx∫04∣(x−4)(x−1)3∣dx=∫01(x−4)(x−1)3dx−∫14(x−4)(x−1)3dxここで、 (x−1)3=x3−3x2+3x−1(x-1)^3 = x^3 - 3x^2 + 3x - 1(x−1)3=x3−3x2+3x−1 なので、(x−4)(x−1)3=(x−4)(x3−3x2+3x−1)=x4−3x3+3x2−x−4x3+12x2−12x+4=x4−7x3+15x2−13x+4(x-4)(x-1)^3 = (x-4)(x^3 - 3x^2 + 3x - 1) = x^4 - 3x^3 + 3x^2 - x - 4x^3 + 12x^2 - 12x + 4 = x^4 - 7x^3 + 15x^2 - 13x + 4(x−4)(x−1)3=(x−4)(x3−3x2+3x−1)=x4−3x3+3x2−x−4x3+12x2−12x+4=x4−7x3+15x2−13x+4したがって、∫01(x4−7x3+15x2−13x+4)dx=[x55−7x44+5x3−13x22+4x]01=15−74+5−132+4=4−35+100−130+8020=1920\int_{0}^{1} (x^4 - 7x^3 + 15x^2 - 13x + 4) dx = \left[ \frac{x^5}{5} - \frac{7x^4}{4} + 5x^3 - \frac{13x^2}{2} + 4x \right]_{0}^{1} = \frac{1}{5} - \frac{7}{4} + 5 - \frac{13}{2} + 4 = \frac{4 - 35 + 100 - 130 + 80}{20} = \frac{19}{20}∫01(x4−7x3+15x2−13x+4)dx=[5x5−47x4+5x3−213x2+4x]01=51−47+5−213+4=204−35+100−130+80=2019∫14(x4−7x3+15x2−13x+4)dx=[x55−7x44+5x3−13x22+4x]14=(455−7⋅444+5⋅43−13⋅422+4⋅4)−(15−74+5−132+4)\int_{1}^{4} (x^4 - 7x^3 + 15x^2 - 13x + 4) dx = \left[ \frac{x^5}{5} - \frac{7x^4}{4} + 5x^3 - \frac{13x^2}{2} + 4x \right]_{1}^{4} = \left( \frac{4^5}{5} - \frac{7 \cdot 4^4}{4} + 5 \cdot 4^3 - \frac{13 \cdot 4^2}{2} + 4 \cdot 4 \right) - \left( \frac{1}{5} - \frac{7}{4} + 5 - \frac{13}{2} + 4 \right)∫14(x4−7x3+15x2−13x+4)dx=[5x5−47x4+5x3−213x2+4x]14=(545−47⋅44+5⋅43−213⋅42+4⋅4)−(51−47+5−213+4)=(10245−7⋅64+5⋅64−13⋅8+16)−1920=10245−448+320−104+16−1920=10245−216−1920=4096−4320−1920=−24320= \left( \frac{1024}{5} - 7 \cdot 64 + 5 \cdot 64 - 13 \cdot 8 + 16 \right) - \frac{19}{20} = \frac{1024}{5} - 448 + 320 - 104 + 16 - \frac{19}{20} = \frac{1024}{5} - 216 - \frac{19}{20} = \frac{4096 - 4320 - 19}{20} = \frac{-243}{20}=(51024−7⋅64+5⋅64−13⋅8+16)−2019=51024−448+320−104+16−2019=51024−216−2019=204096−4320−19=20−243∫04∣(x−4)(x−1)3∣dx=1920−(−24320)=19+24320=26220=13110\int_{0}^{4} |(x-4)(x-1)^3| dx = \frac{19}{20} - \left( \frac{-243}{20} \right) = \frac{19+243}{20} = \frac{262}{20} = \frac{131}{10}∫04∣(x−4)(x−1)3∣dx=2019−(20−243)=2019+243=20262=101313. 最終的な答え13110\frac{131}{10}10131