次の4つの式を展開せよ。 (1) $(a-b-c)^2$ (2) $(a+2b+1)^2$ (3) $(x+3y+2)(x+3y-2)$ (4) $(3x+y-3)(3x+y+5)$代数学展開多項式2025/7/251. 問題の内容次の4つの式を展開せよ。(1) (a−b−c)2(a-b-c)^2(a−b−c)2(2) (a+2b+1)2(a+2b+1)^2(a+2b+1)2(3) (x+3y+2)(x+3y−2)(x+3y+2)(x+3y-2)(x+3y+2)(x+3y−2)(4) (3x+y−3)(3x+y+5)(3x+y-3)(3x+y+5)(3x+y−3)(3x+y+5)2. 解き方の手順(1) (a−b−c)2(a-b-c)^2(a−b−c)2を展開する。(a−b−c)2=((a−b)−c)2=(a−b)2−2(a−b)c+c2=a2−2ab+b2−2ac+2bc+c2=a2+b2+c2−2ab−2ac+2bc(a-b-c)^2 = ((a-b)-c)^2 = (a-b)^2 - 2(a-b)c + c^2 = a^2 - 2ab + b^2 - 2ac + 2bc + c^2 = a^2 + b^2 + c^2 - 2ab - 2ac + 2bc(a−b−c)2=((a−b)−c)2=(a−b)2−2(a−b)c+c2=a2−2ab+b2−2ac+2bc+c2=a2+b2+c2−2ab−2ac+2bc(2) (a+2b+1)2(a+2b+1)^2(a+2b+1)2を展開する。(a+2b+1)2=((a+2b)+1)2=(a+2b)2+2(a+2b)(1)+12=a2+4ab+4b2+2a+4b+1=a2+4b2+1+4ab+2a+4b(a+2b+1)^2 = ((a+2b)+1)^2 = (a+2b)^2 + 2(a+2b)(1) + 1^2 = a^2 + 4ab + 4b^2 + 2a + 4b + 1 = a^2 + 4b^2 + 1 + 4ab + 2a + 4b(a+2b+1)2=((a+2b)+1)2=(a+2b)2+2(a+2b)(1)+12=a2+4ab+4b2+2a+4b+1=a2+4b2+1+4ab+2a+4b(3) (x+3y+2)(x+3y−2)(x+3y+2)(x+3y-2)(x+3y+2)(x+3y−2)を展開する。(x+3y+2)(x+3y−2)=((x+3y)+2)((x+3y)−2)=(x+3y)2−22=x2+6xy+9y2−4(x+3y+2)(x+3y-2) = ((x+3y)+2)((x+3y)-2) = (x+3y)^2 - 2^2 = x^2 + 6xy + 9y^2 - 4(x+3y+2)(x+3y−2)=((x+3y)+2)((x+3y)−2)=(x+3y)2−22=x2+6xy+9y2−4(4) (3x+y−3)(3x+y+5)(3x+y-3)(3x+y+5)(3x+y−3)(3x+y+5)を展開する。(3x+y−3)(3x+y+5)=((3x+y)−3)((3x+y)+5)=(3x+y)2+5(3x+y)−3(3x+y)−15=(3x+y)2+2(3x+y)−15=9x2+6xy+y2+6x+2y−15(3x+y-3)(3x+y+5) = ((3x+y)-3)((3x+y)+5) = (3x+y)^2 + 5(3x+y) - 3(3x+y) - 15 = (3x+y)^2 + 2(3x+y) - 15 = 9x^2 + 6xy + y^2 + 6x + 2y - 15(3x+y−3)(3x+y+5)=((3x+y)−3)((3x+y)+5)=(3x+y)2+5(3x+y)−3(3x+y)−15=(3x+y)2+2(3x+y)−15=9x2+6xy+y2+6x+2y−153. 最終的な答え(1) a2+b2+c2−2ab−2ac+2bca^2 + b^2 + c^2 - 2ab - 2ac + 2bca2+b2+c2−2ab−2ac+2bc(2) a2+4b2+1+4ab+2a+4ba^2 + 4b^2 + 1 + 4ab + 2a + 4ba2+4b2+1+4ab+2a+4b(3) x2+6xy+9y2−4x^2 + 6xy + 9y^2 - 4x2+6xy+9y2−4(4) 9x2+6xy+y2+6x+2y−159x^2 + 6xy + y^2 + 6x + 2y - 159x2+6xy+y2+6x+2y−15