与えられた極限の値を求めます。問題は、 $\lim_{x \to 1} \left( \frac{x}{1-x} - \frac{1}{\log x} \right) (x-1)$ です。解析学極限ロピタルの定理テイラー展開2025/7/261. 問題の内容与えられた極限の値を求めます。問題は、limx→1(x1−x−1logx)(x−1)\lim_{x \to 1} \left( \frac{x}{1-x} - \frac{1}{\log x} \right) (x-1)limx→1(1−xx−logx1)(x−1)です。2. 解き方の手順与えられた極限を計算するために、まず式を整理します。limx→1(x1−x−1logx)(x−1)=limx→1(xlogx−(1−x)(1−x)logx)(x−1)=limx→1xlogx−(1−x)(1−x)logx(x−1)\lim_{x \to 1} \left( \frac{x}{1-x} - \frac{1}{\log x} \right) (x-1) = \lim_{x \to 1} \left( \frac{x \log x - (1-x)}{(1-x)\log x} \right) (x-1) = \lim_{x \to 1} \frac{x \log x - (1-x)}{(1-x)\log x} (x-1) limx→1(1−xx−logx1)(x−1)=limx→1((1−x)logxxlogx−(1−x))(x−1)=limx→1(1−x)logxxlogx−(1−x)(x−1)ここで、x=1+hx = 1 + hx=1+h とおくと、x→1x \to 1x→1 のとき h→0h \to 0h→0 なので、limh→0(1+h)log(1+h)−(−h)(−h)log(1+h)h=limh→0(1+h)log(1+h)+h−hlog(1+h)h=limh→0(1+h)log(1+h)+h−log(1+h) \lim_{h \to 0} \frac{(1+h) \log (1+h) - (-h)}{(-h)\log(1+h)} h = \lim_{h \to 0} \frac{(1+h) \log (1+h) + h}{-h\log(1+h)} h = \lim_{h \to 0} \frac{(1+h) \log (1+h) + h}{-\log(1+h)} limh→0(−h)log(1+h)(1+h)log(1+h)−(−h)h=limh→0−hlog(1+h)(1+h)log(1+h)+hh=limh→0−log(1+h)(1+h)log(1+h)+hlog(1+h)=h−h22+h33−⋯\log(1+h) = h - \frac{h^2}{2} + \frac{h^3}{3} - \cdotslog(1+h)=h−2h2+3h3−⋯ を代入すると、limh→0(1+h)(h−h22+h33−⋯ )+h−(h−h22+h33−⋯ )=limh→0h−h22+h33+h2−h32+⋯+h−h+h22−h33+⋯=limh→02h+h22−h36+⋯−h+h22−h33+⋯=limh→0h(2+h2−h26+⋯ )h(−1+h2−h23+⋯ )=limh→02+h2−h26+⋯−1+h2−h23+⋯=2−1=−2 \lim_{h \to 0} \frac{(1+h)(h-\frac{h^2}{2} + \frac{h^3}{3} - \cdots) + h}{-(h-\frac{h^2}{2} + \frac{h^3}{3} - \cdots)} = \lim_{h \to 0} \frac{h - \frac{h^2}{2} + \frac{h^3}{3} + h^2 - \frac{h^3}{2} + \cdots + h}{-h + \frac{h^2}{2} - \frac{h^3}{3} + \cdots} = \lim_{h \to 0} \frac{2h + \frac{h^2}{2} - \frac{h^3}{6} + \cdots}{-h + \frac{h^2}{2} - \frac{h^3}{3} + \cdots} = \lim_{h \to 0} \frac{h(2 + \frac{h}{2} - \frac{h^2}{6} + \cdots)}{h(-1 + \frac{h}{2} - \frac{h^2}{3} + \cdots)} = \lim_{h \to 0} \frac{2 + \frac{h}{2} - \frac{h^2}{6} + \cdots}{-1 + \frac{h}{2} - \frac{h^2}{3} + \cdots} = \frac{2}{-1} = -2 limh→0−(h−2h2+3h3−⋯)(1+h)(h−2h2+3h3−⋯)+h=limh→0−h+2h2−3h3+⋯h−2h2+3h3+h2−2h3+⋯+h=limh→0−h+2h2−3h3+⋯2h+2h2−6h3+⋯=limh→0h(−1+2h−3h2+⋯)h(2+2h−6h2+⋯)=limh→0−1+2h−3h2+⋯2+2h−6h2+⋯=−12=−23. 最終的な答え-2