関数 $y = \frac{\log(x^2 + x)}{\log(x + 1)}$ を微分する。解析学微分対数関数商の微分法2025/7/261. 問題の内容関数 y=log(x2+x)log(x+1)y = \frac{\log(x^2 + x)}{\log(x + 1)}y=log(x+1)log(x2+x) を微分する。2. 解き方の手順y=log(x2+x)log(x+1)y = \frac{\log(x^2 + x)}{\log(x + 1)}y=log(x+1)log(x2+x) を微分するには、商の微分公式を用いる。商の微分公式は、関数 u(x)u(x)u(x) と v(x)v(x)v(x) に対して、ddx(u(x)v(x))=u′(x)v(x)−u(x)v′(x)[v(x)]2\frac{d}{dx} \left(\frac{u(x)}{v(x)}\right) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}dxd(v(x)u(x))=[v(x)]2u′(x)v(x)−u(x)v′(x) で与えられる。この問題では、u(x)=log(x2+x)u(x) = \log(x^2 + x)u(x)=log(x2+x) および v(x)=log(x+1)v(x) = \log(x + 1)v(x)=log(x+1) とする。まず、u′(x)u'(x)u′(x) と v′(x)v'(x)v′(x) を計算する。u′(x)=ddxlog(x2+x)=1x2+x⋅ddx(x2+x)=2x+1x2+x=2x+1x(x+1)u'(x) = \frac{d}{dx} \log(x^2 + x) = \frac{1}{x^2 + x} \cdot \frac{d}{dx} (x^2 + x) = \frac{2x + 1}{x^2 + x} = \frac{2x + 1}{x(x + 1)}u′(x)=dxdlog(x2+x)=x2+x1⋅dxd(x2+x)=x2+x2x+1=x(x+1)2x+1v′(x)=ddxlog(x+1)=1x+1⋅ddx(x+1)=1x+1v'(x) = \frac{d}{dx} \log(x + 1) = \frac{1}{x + 1} \cdot \frac{d}{dx} (x + 1) = \frac{1}{x + 1}v′(x)=dxdlog(x+1)=x+11⋅dxd(x+1)=x+11商の微分公式にこれらの値を代入する。dydx=u′(x)v(x)−u(x)v′(x)[v(x)]2\frac{dy}{dx} = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}dxdy=[v(x)]2u′(x)v(x)−u(x)v′(x)dydx=2x+1x(x+1)log(x+1)−log(x2+x)x+1[log(x+1)]2\frac{dy}{dx} = \frac{\frac{2x + 1}{x(x + 1)} \log(x + 1) - \frac{\log(x^2 + x)}{x + 1}}{[\log(x + 1)]^2}dxdy=[log(x+1)]2x(x+1)2x+1log(x+1)−x+1log(x2+x)ここで、x2+x=x(x+1)x^2 + x = x(x + 1)x2+x=x(x+1) であるから log(x2+x)=log(x(x+1))=log(x)+log(x+1)\log(x^2 + x) = \log(x(x + 1)) = \log(x) + \log(x + 1)log(x2+x)=log(x(x+1))=log(x)+log(x+1)dydx=2x+1x(x+1)log(x+1)−log(x)+log(x+1)x+1[log(x+1)]2\frac{dy}{dx} = \frac{\frac{2x + 1}{x(x + 1)} \log(x + 1) - \frac{\log(x) + \log(x + 1)}{x + 1}}{[\log(x + 1)]^2}dxdy=[log(x+1)]2x(x+1)2x+1log(x+1)−x+1log(x)+log(x+1)dydx=(2x+1)log(x+1)x(x+1)−x(log(x)+log(x+1))x(x+1)[log(x+1)]2\frac{dy}{dx} = \frac{\frac{(2x + 1) \log(x + 1)}{x(x + 1)} - \frac{x(\log(x) + \log(x + 1))}{x(x + 1)}}{[\log(x + 1)]^2}dxdy=[log(x+1)]2x(x+1)(2x+1)log(x+1)−x(x+1)x(log(x)+log(x+1))dydx=(2x+1)log(x+1)−x(log(x)+log(x+1))x(x+1)[log(x+1)]2\frac{dy}{dx} = \frac{(2x + 1) \log(x + 1) - x(\log(x) + \log(x + 1))}{x(x + 1)[\log(x + 1)]^2}dxdy=x(x+1)[log(x+1)]2(2x+1)log(x+1)−x(log(x)+log(x+1))dydx=(2x+1)log(x+1)−xlog(x)−xlog(x+1)x(x+1)[log(x+1)]2\frac{dy}{dx} = \frac{(2x + 1) \log(x + 1) - x\log(x) - x\log(x + 1)}{x(x + 1)[\log(x + 1)]^2}dxdy=x(x+1)[log(x+1)]2(2x+1)log(x+1)−xlog(x)−xlog(x+1)dydx=(x+1)log(x+1)−xlog(x)x(x+1)[log(x+1)]2\frac{dy}{dx} = \frac{(x + 1) \log(x + 1) - x\log(x)}{x(x + 1)[\log(x + 1)]^2}dxdy=x(x+1)[log(x+1)]2(x+1)log(x+1)−xlog(x)3. 最終的な答えdydx=(x+1)log(x+1)−xlog(x)x(x+1)[log(x+1)]2\frac{dy}{dx} = \frac{(x + 1) \log(x + 1) - x\log(x)}{x(x + 1)[\log(x + 1)]^2}dxdy=x(x+1)[log(x+1)]2(x+1)log(x+1)−xlog(x)